
De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Distributed cycle detection in large-scale sparse graphs

Rodrigo Caetano Rocha
Department of Computer Science, Universidade Federal de Minas Gerais

Belo Horizonte, MG – Brazil
rcor@dcc.ufmg.br

Bhalchandra D. Thatte
Department of Mathematics, Universidade Federal de Minas Gerais

Belo Horizonte, MG – Brazil
bhalchandra@mat.ufmg.br

ABSTRACT
In this paper we present a distributed algorithm for detecting cycles in large-scale di-

rected graphs, along with its correctness proof and analysis. The algorithm is then extended to find
strong components in directed graphs. We indicate an application to detecting cycles in number
theoretic functions such as the proper divisor function. Our prototype implementation of the cy-
cle detection algorithm, when applied to the proper divisor function, detects all sociable groups of
numbers (cycles in the proper divisor function) up to 107.

KEYWORDS. Graph theory, cycle detection, distributed algorithms.

Main Area: TAG - Theory and Algorithms in Graphs.

RESUMO
Nesse artigo nós apresentamos um algoritmo distribuı́do para detectar ciclos em grafos

massivos direcionados, juntamente com a sua análise e prova de corretude. O algoritmo é exten-
dido para detectar componentes fortemente conectadas em grafos direcionados. Indicamos uma
aplicação para a detecção de ciclos em funções de teoria dos números tal como a função dos di-
visores próprios. Nosso protótipo de implementação do algoritmo de detecção de ciclos, quando
aplicado à função dos divisores próprios, detecta todos os grupos de números sociáveis (ciclos na
função dos divisores próprios) até 107.

PALAVRAS CHAVE. Teoria dos grafos, detecção de ciclos, algoritmos distbuı́dos.

Área Principal: TAG - Teoria e Algoritmos em Grafos.

3643

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

1. Introduction
The growing scale and importance of graph data has driven the development of numerous

new parallel and distributed graph processing systems. For these massive data applications, the
resulting graphs can have billions of connections, and are usually highly sparse with complex,
irregular, and often a power-law structure [28].

There are great many theoretical and practical problems that deal with sparse graphs. For
example, the Internet is a sparse network with average degree less than 4, see [8] and [10]. The
networks of citations of scientific papers are also sparse, with the average number of references in a
paper of the order of 10 [19]. Similarly, data sets of biological interactions often constitute sparse
networks [7, 21], e.g., protein-protein interaction networks, gene regulation networks, etc. Bio-
logical neural networks are also represented by sparse networks [25]. Problems involving number
theoretic functions also lead to sparse graphs, as described in Section 3.1.4.

Most parallel graph processing systems, such as Pregel [16], GraphX [29, 28], GPS [22],
and Giraph [3], are mainly based on the bulk synchronous parallel model [26]. PowerGraph [12]
supports both bulk synchronous and asynchronous implementations.

In the bulk synchronous parallel model [26] for graph processing, the large input graph is
partitioned to the worker machines. Each worker machine is responsible for executing the vertices
that are assigned to it. Then, a superstep concept is used for coordinating the parallel execution
of computations on worker machines. A superstep consists of three parts: (i) concurrent computa-
tion, (ii) communication, (iii) synchronisation barrier. Every worker machine concurrently executes
computations for the vertices it is responsible for. Each worker machine sends messages on behalf
of the vertices it is responsible for to its neighbours. The neighbouring vertices may or may not be
in the same worker machine. When a worker machine reaches the barrier, it waits until all other
worker machines have finished their communication actions, before the system as a whole can move
to the next superstep. A computation involves many supersteps executed one after the other in this
manner. So, in a superstep, the worker uses values communicated via messages from the previous
superstep, instead of most recent values.

In this paper, we propose a distributed algorithm for detecting cycles on large-scale di-
rected graphs based on the bulk synchronous message passing abstraction. The proposed algo-
rithm for detecting cycles by message passing is suitable to be implemented in distributed graph
processing systems, and it is also suitable for implementations in systems for disk-based compu-
tations, such as the GraphChi [15], where the computation is mainly based on secondary memory.
Disk-based computations are necessary when we have a single computer for processing large-scale
graphs, and the computation exceeds the primary memory capacity.

The rest of this paper is structured as follows. Graph theoretic notation and preliminar-
ies are fixed in Section 2. A cycle detection algorithm (Algorithm 1) based on message passing
is presented in Section 3.1. The correctness of Algorithm 1 is proved in Section 3.1.1. In Sec-
tions 3.1.3 and 3.1.4, the total number of iterations and the number of messages exchanged at each
iteration of Algorithm 1 are analysed. In Section 4, an algorithm for finding the strongly connected
components of a graph is presented (Algorithm 2); the algorithm makes use of the cycle detection
algorithm (Algorithm 1).

2. Graph theoretic notation
Throughout this paper we assume that G := (V,E) is a finite directed graph, where V

is the set of vertices, E ⊆ V × V is the set of arcs, ν(G) := |V |, and ε(G) := |E|. Let v ∈ V .
We denote the set of out-neighbours of v by N+(v), the set of in-neighbours of v by N−(v), the
out-degree of v by d+(v), and the in-degree of v by d−(v). We denote by ∆+(G) the maximum
out-degree of vertices of G. A walk in G is a sequence (v0, e1, v1, . . . , ek, vk), where each vi is
a vertex, and each ei is an arc from vi−1 to vi. The length of a walk is the number of arcs in the
walk. A closed walk is a walk (v0, e1, v1, . . . , ek, vk) in which the origin v0 and the terminus vk are
equal. A cycle is a closed walk in which all vertices except the origin and the terminus are distinct.

3644

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

A cycle of length 0 has a single vertex and no arcs. In this paper, we consider only non-trivial
cycles, i.e., cycles containing at least one arc. A cycle of length 1 has one arc, and corresponds to a
loop in the graph. Since our definition of a directed graph permits at most one arc between any pair
of vertices, there is no ambiguity when we write a cycle of length k by a sequence of k+ 1 vertices.
For example, (v) is a cycle of length 0, and (v, v) is a cycle of length 1, and so on. We refer to [27]
for standard graph theoretic notions not defined above.

3. Searching for cycles
An efficient method for detecting cycles in a directed graph is to use the depth-first search

(DFS) algorithm, considering the fact that a directed graph has a cycle if and only if DFS finds a back
arc. The running time of DFS on a directed graph G is Θ(ν(G) + ε(G)), and it is asymptotically
optimal [6].

Although DFS is asymptotically optimal, Reif [20] suggests that it cannot be effectively
parallelised, by proving the polynomial time completeness (P-completeness) of DFS. The remainder
of this section describes and analyses a distributed cycle detection algorithm with intrinsic potential
for parallelism.

3.1. Detecting cycles by message passing
In the context of big data, where the graph structure can be large enough to saturate the

processing power or memory capacity of a single machine, it is difficult to effectively parallelise
the DFS algorithm. Hence we need an algorithm that divides the problem into subproblems among
computational nodes, so that the nodes can search for cycles in a parallel manner with the certainty
that all cycles are found.

We propose a general algorithm for detecting cycles in a directed graph G by message
passing among its vertices, based on the bulk synchronous message passing abstraction. This is a
vertex-centric approach in which the vertices of the graph work together for detecting cycles. The
bulk synchronous parallel model consists of a sequence of iterations, in each of which a vertex
can receive messages sent by other vertices in the previous iteration, and send messages to other
vertices.

In each pass, each active vertex of G sends a set of sequences of vertices to its out-
neighbours as described next. In the first pass, each vertex v sends the message (v) to all its out-
neighbours. In subsequent iterations, each active vertex v appends v to each sequence it received
in the previous iteration. It then sends all the updated sequences to its out-neighbours. If v has not
received any message in the previous iteration, then v deactivates itself. The algorithm terminates
when all the vertices have been deactivated.

For a sequence (v1, v2, . . . , vk) received by vertex v, the appended sequence is not for-
warded in two cases: (i) if v = v1, then v has detected a cycle, which is reported (see line 9 of
Algorithm 1); (ii) if v = vi for some i ∈ {2, 3, . . . , k}, then v has detected a sequence that contains
the cycle (v = vi, vi+1, . . . , vk, vk+1 = v); in this case, the sequence is discarded, since the cycle
must have been detected in an earlier iteration (see line 11 of Algorithm 1); to be precise, this cycle
must have been detected in iteration k − i+ 1. Every cycle (v1, v2, . . . , vk, vk+1 = v1) is detected
by all vi, i = 1 to k in the same iteration; it is reported by the vertex min{v1, . . . , vk} (see line 9 of
Algorithm 1).

The total number of iterations of the algorithm is the number of vertices in the longest
path in the graph, plus a few more steps for deactivating the final vertices. During the analysis of
the total number of iterations, we ignore the few extra iterations needed for deactivating the final
vertices and detecting the end of the computation, since it is O(1). In practice, the actual number
of these final few iterations depends on the framework being used to implement the algorithm.

We count iterations as i = 0, 1, Let M (v)
i be the set of messages (sequences of

vertices) received by v at iteration i. Since messages sent in iteration i = 0 are received in iteration
i = 1, M (v)

0 = ∅.

3645

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Algorithm 1 Pseudocode for the compute function of the distributed cycle detection algorithm. The
algorithm takes G as input, and for each superstep i the function COMPUTE(M (v)

i) is executed for
each active vertex v.

1: function COMPUTE(M (v)
i)

2: if i = 0 then
3: for each w ∈ N+(v) do
4: send (v) to w
5: else if M (v)

i = ∅ then
6: deactivate v and halt
7: else
8: for each (v1, v2, . . . , vk) ∈M

(v)
i do

9: if v1 = v and min{v1, v2, . . . , vk} = v then
10: report (v1 = v, v2, . . . , vk, vk+1 = v)
11: else if v /∈ {v2, . . . , vk} then
12: for each w ∈ N+(v) do
13: send (v1, v2, . . . , vk, v) to w

Figure 1 presents an example of the execution of the algorithm. In iteration i = 3, all the
three vertices detect the cycle [2, 3, 4]. We ensure that the cycle is reported only once by emitting
the detected cycle only from the vertex with the least identifier value in the ordered sequence, which
is the vertex 2 in the example.

1 2 3 5

4

[1] [2] [3]

[3][4]

1 2 3 5

4

halt [1, 2]
[4, 2] [2, 3]

[2, 3][3, 4]

1 2 3 5

4

[3, 4, 2]
[1, 2, 3]
[4, 2, 3]

[2, 3, 4]
[1, 2, 3]
[4, 2, 3]

1 2 3 5

4

[1, 2, 3, 4]

output: [2, 3, 4]

1 2 3 5

4

halt halt

halt

1 2 3 5

4

halt

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 1: Example of the algorithm for detecting cycles by message passing.

3.1.1. A correctness proof using loop-invariant
Let C be the set of all non-trivial cycles in G (i.e., cycles with at least one arc). Let

S := (v1, v2, . . . , vi) be a message and u a vertex; we define S.u := (v1, v2, . . . , vi, u) as the
concatenation of the message S with the vertex u.

3646

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Loop-invariant: For i ≥ 1, the set Ci contains all non-trivial cycles of length i, which are detected
and reported in iteration i, and the set M (v)

i contains all messages of length i received by v in
iteration i.
Base case. In iteration i = 1, each vertex v receives a message (w) from each of its in-neighbours
w. Hence, M (v)

1 = {(w)|w ∈ N−(v)}. If there is a loop at v, then v receives a message (v) in
iteration i = 1; in this case, v detects and reports the cycle (v, v) of length 1. Hence, at the end of
iteration i = 1, the set C1 contains all cycles of length 1.
Induction hypothesis. Suppose the loop invariant holds at the end of iteration i for some i ≥ 1, i.e.,
Ci contains all cycles of length i detected in iteration i, and M (v)

i contains all messages of length i
received by v in iteration i.
Inductive step. We prove that

M
(v)
i+1 =

⋃
w∈N−(v)

{S.w|S := (v1, v2, . . . , vi) ∈M (w)
i and w 6= vk, ∀k ∈ [1, i]}

and
Ci+1 =

⋃
v∈V (G)

{S.v|S := (v1, v2, . . . , vi+1) ∈M (v)
i+1 and v1 = v}.

By induction hypothesis, the set M (w)
i contains all messages of length i that reach w, for all

w ∈ N−(v). If S := (v1, v2, . . . , vi) ∈ M
(w)
i and w /∈ S, then w sends the message S.w :=

(v1, v2, . . . , vi, vi+1 = w) (of length i + 1) to all its out-neighbours (one of them being v). Hence
the message S.w is received by v in iteration i+1. Thus M (v)

i+1 is the set of messages of length i+1
that reach v in iteration i+1. To prove that Ci+1 contains all cycles of length i+1, observe that the
setM (v)

i+1 contains (v1 = v, v2, . . . , vi+1) iff there exists a cycle (v1 = v, v2, . . . , vi, vi+1, vi+2 = v)
of length i+1 that starts and finishes at vertex v. Therefore, the loop-invariant still holds at iteration
i+ 1, and the algorithm constructs C =

⋃ν(G)
k=1 Ck.

3.1.2. Graph partitioning and communication by message passing
When considering distributed graph processing frameworks, the input graph partitioning

is crucial for achieving an efficient distributed execution. Considering that the graph structure de-
scribes data movement, minimisation of storage and communication overhead, and balanced com-
putation depend on the graph partitioning performed by the framework.

Most of the frameworks for processing graphs try to optimise the partitioning strategy,
maximising the number of messages exchanged directly via shared memory communication. The
two most common partitioning strategies are based on edge-cut and vertex-cut.

In the edge-cut partitioning scheme [12, 29], the vertex set of a graph is partitioned into
blocks, and each block of the partition is processed on a distinct worker machine. Messages between
vertices in the same block are exchanged directly via main memory, reducing communication over-
head and data movement via network. Since constructing an optimal edge-cut for large-scale graphs
can be prohibitively expensive, many graph processing frameworks use a random edge-cut (i.e., ran-
domly distribute vertices across the cluster).

Vertex-cuts evenly assign edges to machines, and allow vertices to span multiple worker
machines. For power-law graphs, the vertex-cut strategy can reduce communication overhead and
ensure balanced computation by evenly assigning edges to machines in a way that minimises the
number of machines spanned by each vertex [12, 29].

3.1.3. The worst case and the average case analysis of the number of messages sent in
iteration t

Let G be a graph on n vertices. The worst case scenario occurs when G is a complete
directed graph with loops. In this case, we have n iterations. Let nt denote the falling factorial

3647

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

n(n − 1) · · · (n − t + 1). Let Yt be the total number of messages sent during iteration t, for
t ≥ 0. Let Dn,p denote the model of random directed graphs in which each possible arc (i, j) (with
possibly i = j) has probability p. This model is similar to the Erdös-Rényi random graph model
Gn,p [4, 13]. In the case of a random graph, Yt is the random variable representing the total number
of messages sent during iteration t.

Proposition 3.1.

1. When G is a complete graph, we have Yt = nnt+1.

2. When G is a random graph from Dn,p, we have

E [Yt] = nnt+1 pt+1.

Proof. First we prove the formula for Yt for a complete graph. Every message sent in iteration t is
of the type (v0, ..., vt), where vi are distinct vertices. There are nt+1 such sequences. Moreover,
each such sequence is a message. The multiplicity of a fixed message (v0, ..., vt) is n; it is sent by
vt to all its out-neighbours (including itself). Hence

Yt = nnt+1.

The argument is similar when G is a random graph from Dn,p. Let S := (v0, ..., vt),
where vi are distinct vertices. Let u be an arbitrary vertex. Let a binary random variable XS,u be
defined as follows.

XS,u =

{
1 if message S is sent by vt to u;

0 otherwise.

Then
Yt =

∑
S,u

XS,u.

The message S is sent by vertex vt to vertex u in iteration t if each of the arcs (v0, v1), . . . ,
(vt−1, vt), (vt, u) is present in G. Thus E [XS,u] = Pr{XS,u = 1} = pt+1. There are nnt+1

possible pairs (S, u). Hence, by linearity of expectation,

E [Yt] = nnt+1 pt+1.

Let ZG be the number of iterations before Algorithm 1 terminates. In the case of a random
directed graph, ZG is the random variable representing the number of iterations before Algorithm 1
terminates.

Proposition 3.2. The number of iterations ZG of Algorithm 1 on a graph G is equal to the length
of the longest path in G. When G is a random graph from Dn,p, for every ε in (0, 1), we have

E [ZG] =


Θ(log n) if p = 1−ε

n

Θ(
√
n log n) if p = 1

n

Θ(n) if p = 1+ε
n

Proof. The first part is obvious, since a message longer than the longest path has at least one vertex
repeated, and hence is discarded. The second part follows directly from Ajtai et al. [2], where the
length of the longest path in a random directed graph is analysed in the three cases stated above.

3648

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

3.1.4. Graphs with out-degree at most 1
In this section, we assume that G has maximum out-degree ∆+(G) = 1.

Lemma 3.3. The number of messages Yt sent in iteration t is at most ν(G), for all t ≥ 0.

Proof. At t = 0, the total number of messages sent is
∑

v d
+(v) = ε(G); hence the number of

messages received at t = 1 is |M1| = ε(G), which is at most v(G) since d+(v) ≤ 1 for all v.
In any iteration t, the same message S is never received by two distinct vertices u and v,

since otherwise there would exist a vertex w that sent a message S to u and v, which is not possible
since d+(w) ≤ 1 for all w ∈ V (G).

Suppose that u receives message S at time t. Then there are 3 possibilities:

1. if d+(u) = 0, then u does not send any message.

2. if d+(u) = 1 and S.u contains a cycle, then u does not send the message S.u.

3. if d+(u) = 1 and S.u does not contain a cycle, then u sends the message S.u at time t to its
(unique) out-neighbour.

Therefore, there is a one-to-one map (S.u → S) from the set of messages sent at time t (i.e., the
set Mt+1 of messages received at time t + 1) to the the set of messages sent at time t − 1 (i.e.,
the set Mt of messages received at time t). Hence |Mt+1| ≤ |Mt| for all t, which implies that
|Mt| ≤ |M1| = ε(G) ≤ ν(G).

Since ∆+(G) = 1, each component Gi of G is either a tree or a unicyclic graph. If a
component Gi is a tree, then it contains a unique vertex r of out-degree 0, and each arc (u, v) is
directed towards r (i.e., vertex v is on the path from u to r). If Gi is a unicyclic graph, then Gi
contains a unique directed cycle, say (u1, u2, . . . , uk, u1), and each arc (u, v) not on the cycle is
directed towards a unique point on the cycle (i.e., the vertex v is on the path from u to a unique
vertex on the cycle). Figure 2 shows a graph with two unicyclic components and directed trees
rooted at points on the cycle.

Figure 2: Example of a graph G with ∆+(G) = 1 and two components, one of which is a (directed) tree
and the other is unicyclic. In this case, the total number of iterations is maxi{hi +ki +1} = 3+6+1 = 10

Lemma 3.4. Let Gi, i = 1, 2, . . . be the components of G. Let ki be the length of the cycle in Gi.
Let hi be the maximum height of a tree rooted at a vertex on the cycle in Gi. If Gi is a tree, then
ki = 0, and hi is the maximum distance between a leaf ofGi and the unique sink vertex inGi. Then
the total number of iterations of Algorithm 1 is maxi{hi + ki + 1}.

Proof. Let v ∈ V (Gi). If the path from v to a unique vertex on the cycle has length l (i.e., it has
l arcs), then a message starting at v at t = 0 reaches a vertex on the cycle at t = l. The message
takes ki more iterations to go around the cycle. Hence it is discarded at t = l + ki + 1 when the
cycle is detected. The maximum value of l is hi. Hence the last message is discarded at iteration
maxi{hi + ki + 1}.

3649

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Algorithm 1 in the special case ∆+(G) = 1 may be used to detect cycles in number
theoretic functions. Consider a function f : N → N. Let GN,f be a directed graph with vertex set
N and the set of arcs E := {(a, f(a)) | a ∈ N}. To detect cycles in GN,f on vertices in [1, n], we
define U := [1, n]

⋃
{f(k)|k ∈ [1, n]}, and Gn,f to be the restriction of GN,f to U . As in André

Joyal’s proof of Cayley’s formula [14], each component of Gn,f is either a tree or is unicyclic.
As an illustration, we have implemented Algorithm 1 to discover sociable numbers. For

a positive integer n, let σ1(n) be the number of divisors of n. We denote by s(n) the sum of proper
positive divisors of n, i.e., s(n) := σ1(n) − n. The function s(n) is called the restricted divisor
function. We say that n is a perfect number if n = s(n). Similarly, a pair (m,n) of positive
integers is an amicable pair if s(n) = m and s(m) = n [30]. Sociable numbers are numbers that
result in a periodic aliquot sequence, also known as aliquot cycles, where an aliquot sequence is the
sequence n, s(n), s2(n), . . . , sk(n) obtained by repeatedly applying the restricted divisor function.
If the period of the aliquot cycle is 1 (i.e., s(n) = n), then n is a perfect number. If the period is 2
(i.e., s2(n) = n), then the two numbers n and s(n) constitute an amicable pair. In general, if the
period is t, then the sequence of numbers is said to be a sociable group of order t [5, 9, 30]. Our
prototype implementation of Algorithm 1, running on the GraphChi disk-based processing system,
detected all 111 known social groups up to 107, including perfect and amicable numbers, in a total
of 180 iterations. By using this graph-based approach, we can search for sociable numbers in a
more systematic manner than when compared to other exhaustive approaches [11, 17, 18].

4. Detecting strongly connected components
Define a relation ∼ on V (G) as follows: for all u, v ∈ V (G), define u ∼ v if and only

if there are paths from u to v and from v to u. The relation ∼ is an equivalence relation. The
subgraphs of G induced by the equivalence classes of ∼ are called strongly connected components
of G. The definition of ∼ implies that each cycle in G is contained in a unique strongly connected
component (SCC).

Let C := Ci, i ∈ [1, n] be a sequence of cycles such that either n = 1 or for all k ∈ [2, n],
Ck intersects ∪k−1i=1Ci. Then H := ∪ni=1Ci must be a subgraph of a strongly connected component.

Lemma 4.1. If C is maximal in the sense that each cycle C not in C is either vertex disjoint with H
or is a subgraph of H , then H is a strong component.

Proof. If H is not a strong component, then there is a unique a strong component H ′ that contains
H as a proper subgraph. Let x ∈ V (H ′)\V (H) and y ∈ V (H) such that (x, y) ∈ E(G). Moreover,
there must be a directed path, say P , from y to x in H ′. Now P ∪ (x, y) is a directed cycle not in C
that intersects C, which implies that C is not maximal, which is a contradiction.

Similar to the problem of cycle detection, most algorithms for partitioning a graph into
SCCs, such as Tarjan’s algorithm [24] and Kosaraju-Sharir algorithm [1, 23], are based on DFS.
Thus, detecting SCCs has similar issues as cycle detection, when dealing with large-scale graphs.

Although Algorithm 2 is intended to be a cetralised system, it can be integrated with
Algorithm 1. Whenever Algorithm 1 finds a new cycle, the cycle is reported to the centrilised
system, where the merge function may be concurrently executed. Since both algorithms execute in
parallel, the time required to merge the SCCs overlaps with the time to compute the cycles.

3650

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

Algorithm 2 Pseudocode for partitioning a directed graph into strongly-connected components.
1: function COMPOSESCC(G)
2: SCC← V (G)
3: for each C ∈ CYCLES(G) do
4: SCC← MERGE(SCC, C)

5: return SCC

6: function MERGE(SCC, C)
7: newSCC← ∅
8: for each S ∈ SCC do
9: if C ∩ S = ∅ then

10: newSCC← newSCC∪{S}
11: else
12: C ← C ∪ S
13: newSCC← newSCC∪{C}
14: return newSCC

5. Acknowledgments
The authors thank Daniel M. Martin (UFABC) for many useful comments on this work.

References
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data structures and algorithms. Addison-

Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing
Co., Reading, Mass., 1983.

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. The longest path in a random graph. Combina-
torica, 1(1):1–12, 1981.

[3] Ching Avery. Giraph: Large-scale graph processing infrastructure on hadoop. Proceedings of the
Hadoop Summit. Santa Clara, 2011.

[4] Béla Bollobás. Random graphs. Springer, 1998.

[5] Henri Cohen. On amicable and sociable numbers. Math. Comp., 24:423–429, 1970.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
algorithms. MIT Press, Cambridge, MA, third edition, 2009.

[7] Amira Djebbari and John Quackenbush. Seeded bayesian networks: constructing genetic networks
from microarray data. BMC systems biology, 2(1):57, 2008.

[8] Sergey N Dorogovtsev and Jose FF Mendes. Evolution of networks. Advances in physics,
51(4):1079–1187, 2002.

[9] P. Erdős. On asymptotic properties of aliquot sequences. Math. Comp., 30(135):641–645, 1976.

[10] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the
internet topology. In ACM SIGCOMM Computer Communication Review, volume 29, pages
251–262. ACM, 1999.

[11] Achim Flammenkamp. New sociable numbers. mathematics of computation, pages 871–873, 1991.

3651

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. PowerGraph:
Distributed graph-parallel computation on natural graphs. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI’12, pages 17–30, Berke-
ley, CA, USA, 2012. USENIX Association.

[13] Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs. 2000. Wiley–Intersci. Ser.
Discrete Math. Optim, 2000.

[14] André Joyal. Une théorie combinatoire des séries formelles. Adv. in Math., 42(1):1–82, 1981.

[15] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph computation on
just a PC. In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 31–46, Berkeley, CA, USA, 2012. USENIX Association.

[16] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser,
and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10,
pages 135–146, New York, NY, USA, 2010. ACM.

[17] David Moews and Paul C Moews. A search for aliquot cycles below 1010. mathematics of compu-
tation, 57(196):849–855, 1991.

[18] David Moews and Paul C Moews. A search for aliquot cycles and amicable pairs. Mathematics of
computation, 61(204):935–938, 1993.

[19] Sidney Redner. How popular is your paper? an empirical study of the citation distribution. The
European Physical Journal B-Condensed Matter and Complex Systems, 4(2):131–134, 1998.

[20] John H. Reif. Depth-first search is inherently sequential. Inform. Process. Lett., 20(5):229–234,
1985.

[21] Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Amélie Dricot,
Ning Li, Gabriel F Berriz, Francis D Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, et al.
Towards a proteome-scale map of the human protein–protein interaction network. Nature,
437(7062):1173–1178, 2005.

[22] Semih Salihoglu and Jennifer Widom. GPS: A graph processing system. In Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, SSDBM, pages
22:1–22:12, New York, NY, USA, 2013. ACM.

[23] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. Comput.
Math. Appl., 7(1):67–72, 1981.

[24] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[25] Henry C Tuckwell and Jianfeng Feng. Estimation of spike train statistics in spontaneously active
biological neural networks. In Networks: From Biology to Theory, pages 129–141. Springer,
2007.

[26] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111,
August 1990.

[27] D.B. West. Introduction to graph theory. Prentice Hall, 2001.

3652

De 25 a 28 de Agosto de 2015.

Porto de Galinhas, Pernambuco-PEXLVII
SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL

[28] Reynold S. Xin, Daniel Crankshaw, Ankur Dave, Joseph E. Gonzalez, Michael J. Franklin, and Ion
Stoica. Graphx: Unifying data-parallel and graph-parallel analytics. CoRR, abs/1402.2394,
2014.

[29] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx: A resilient dis-
tributed graph system on spark. In First International Workshop on Graph Data Management
Experiences and Systems, GRADES ’13, pages 2:1–2:6, New York, NY, USA, 2013. ACM.

[30] Song Y. Yan. Perfect, amicable and sociable numbers. World Scientific Publishing Co., Inc., River
Edge, NJ, 1996. A computational approach.

3653

