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Abstract

In modern optimising compilers, the correct choice of an optimisation sequence

can have a significant impact on the performance of the final optimised program. Each

of these optimisation passes interacts with the code in complicated ways, depending

on all other optimisations and the order they were applied to the code being optimised.

Because of the unpredictability of optimisation interactions and their complexity, effi-

ciently selecting the best optimisation sequence for a given program, or program sec-

tion, remains an open problem. A well-known compilation technique that addresses

this challenge is iterative compilation.

In this thesis, we focus on enabling iterative compilation in online scenarios. We

define the online scenario as having the restriction that programs execute multiple in-

puts and distinct inputs are executed only once. Because of these restrictions, standard

metrics for comparing optimisations, such as speedups or execution time alone, are

not viable. To address this challenge, we propose the use of a work-based performance

metric for guiding iterative compilation, where we instrument the program for mea-

suring the amount of work it performed during its execution. In order to reduce the

profiling overhead, we also propose two relaxation algorithms which provide a trade-

off between measurement accuracy and overhead.

In our experimental evaluation, the first relaxation algorithm that operates on re-

gions of functions is able to reduce the average overhead by about 43% over the op-

timal work profiling, while incurring in a dynamic measurement error of much less

than 1%. Similarly, the second relaxation algorithm which operates on the whole pro-

gram, which also makes use of profiling from previous execution, was able to reduce

even further this overhead by a factor of 2.1× compared to the optimal profiling, while

incurring in a dynamic measurement error of less than 3%.

Our evaluation also corroborates the use of the work-based performance metric

for guiding online iterative compilation. Under real conditions, it was able to achieve

good performance improvements when compared to the oracles, which were allowed

to execute the program with the same input multiple times, achieving an average im-

provement of 5.4% and a maximum of about 20%. Contrary to what previous work has

suggested, we have also shown that instructions per cycle (IPC) is not a good metric

for guiding online iterative compilation.
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Chapter 1

Introduction

Modern optimising compilers have reached a high level of sophistication, providing

a large number of optimisations. Because of the unpredictability of optimisation in-

teractions, in addition to the growing complexity of processor architectures and appli-

cations, the correct choice of optimisations and their ordering can have a significant

impact on the performance of the code being optimised (Pan and Eigenmann, 2006;

Fursin et al., 2007; Kulkarni and Cavazos, 2012; Purini and Jain, 2013).

Each of these optimisation passes interacts with the code in complicated ways, de-

pending on all other optimisations and the order they were applied to the code being

optimised. Understanding the interactions of optimisations is very important in de-

termining a good solution to the phase-ordering problem (Touati and Barthou, 2006;

Kulkarni and Cavazos, 2012). Because of all those dependencies and interactions, al-

though most compiler optimisations yield significant improvements in many programs,

the potential for performance degradation in certain program patterns is known to com-

piler writers and many users (Pan and Eigenmann, 2006; Zhou and Lin, 2012; Kulkarni

and Cavazos, 2012).

Compiler writers typically use a combination of experience, insight, and experi-

mentation on benchmark programs to construct a set of default optimisation sequences,

which are commonly associated with the optimisation options like -O1, -O2, -O3, -Os,

and -Oz. Although these default optimisation sequences are expected to provide good

performance on average, they are often sub-optimal for individual programs. More-

over, they usually do not include all the available optimisation passes, and they are

always applied in the same pre-defined order, without regard to the program being op-

timised (Pan and Eigenmann, 2006; Cavazos et al., 2007; Zhou and Lin, 2012; Kulkarni

and Cavazos, 2012). Another major drawback concerns the fact that these default op-
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2 Chapter 1. Introduction

timisation sequences should be reconstructed whenever the backend of the compiler

re-targeted to a new processor architecture or new analysis and optimisations are im-

plemented in the compiler.

Efficiently selecting the best optimisation sequence for a given program or pro-

gram section remains an open problem. A well-known compilation technique that

addresses this challenge is iterative compilation. Iterative compilation has the ability

to adapt to new platforms, program and workload while still having a systematic and

simple optimisation process. It works by repeatedly evaluating a large number of com-

piler optimisations until the best combination is found for a particular program (Fursin

et al., 2007; Chen et al., 2010). The main challenge concerning iterative compilation is

the need for efficiently exploring such a large optimisation space (Fursin et al., 2007;

Cavazos et al., 2007; Zhou and Lin, 2012).

Until recently, most of the existing work had been focusing on finding the best

optimisation through repeated runs using a single input. Although they demonstrate

the potential of iterative compilation, in real scenarios the user rarely executes the

same input dataset multiple times (Bodin et al., 1998; Kisuki et al., 1999; Stephenson

et al., 2003; Kulkarni et al., 2004; Agakov et al., 2006). Applying iterative compilation

in light of a single input may not result in a good performance when executing the

optimised code with different inputs.

Most of the real-world applications are complex enough so that a single input case

does not capture the whole range of possible scenarios and program behaviour (Haneda

et al., 2006; Fursin et al., 2007; Chen et al., 2010, 2012b). Because programs can

exhibit behaviours that differ greatly depending on the input, using a single input for

iterative compilation can produce a poor performance when executed with different

inputs.

Recent work has been studying the impact of using multiple input datasets for per-

forming iterative compilation. This previous work suggests that optimising based on a

representative range of input datasets allows for selecting a robust compiler optimisa-

tion that produces a good performance in real scenarios where the input is expected to

change constantly (Haneda et al., 2006; Fursin et al., 2007; Chen et al., 2010, 2012b,a;

Fang et al., 2015; Mpeis et al., 2016). Their results show that a limited number of

input datasets may be sufficient to obtain a well-optimised program for a wider range

of different inputs (Haneda et al., 2006; Fursin et al., 2007; Chen et al., 2010, 2012b).

Finding such a robust combination of compiler optimisations by means of iterative

compilation across a large range of inputs may be very time-consuming.
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1.1 Iterative Compilation in Online Scenarios

In this work, our main goal is to enable iterative compilation in online scenarios. For

the purposes of this thesis, we define the online scenario as having the restriction that

programs execute multiple inputs and distinct inputs are executed only once. This

online aspect is usually found in mobile and data centre platforms (Chen et al., 2012a;

Fang et al., 2015; Mpeis et al., 2016), where the goal is to optimise programs based

on the workload of a particular user (or group of users) between executions. Online

iterative compilation must target optimal performance across different inputs.

Because of the restriction of having a single execution per input, it is not possible

to measure speedup for comparing optimisations. On the other hand, measuring just

execution time, for example, is useful only if the amount of work is constant between

executions with different inputs. While previous work have suggested using instruc-

tions per cycle (IPC) for performing iterative compilation in online scenarios, IPC have

no correlation with speedup (Fursin et al., 2007).

In order to address this challenge, we propose the use of a work-based metric to

compare the performance of different optimisations across multiple executions of the

program with distinct inputs. We instrument the program for measuring the amount

of work it performed during its execution. Having a low overhead instrumentation is

essential in this online scenario for two main reasons: (i) the user is directly affected by

large overheads; (ii) a highly intrusive instrumentation can have a significant impact

on the effect of the optimisations. With the purpose of reducing profiling overhead,

we propose two relaxation algorithms which provide a trade-off between measurement

accuracy and overhead. The first is a relaxation algorithm that operates on the level of

regions of functions, while the second performs the relaxation considering the whole

program at the same time.

Our experimental evaluation shows that performing online iterative compilation

guided by the work-based performance (WP) metric good results compared to the or-

acle, which is allowed to execute each input multiple times in order to use the actual

speedup for guiding the iterative compilation. Online iterative compilation guided by

the WP metric is able to achieve an average of 7.5% and a maximum of 33% improve-

ment over the standard -O3 optimisation. Moreover, the experiments regarding the

work profiling show that both relaxation algorithms are able to significantly reduce the

profiling overhead while incurring a dynamic error of less than 5% in the work mea-

surement. The whole program relaxation achieves an average of 2× reduction in the
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overhead compared with the optimal profiling technique, while the more conservative

relaxation that operates per region achieves an average improvement of 40% over the

optimal profiling.

1.2 Contributions

To summarise, the main contributions of this thesis are the following:

• We propose the use of a work-based performance (WP) metric for comparing

different optimised versions of a program. In particular, we use the WP metric to

guide iterative compilation in an online scenario, where the program is expected

to execute only once for distinct inputs.

• Contrary to what previous work has suggested, we show that instructions per

cycle (IPC) is not a good metric for online iterative compilation.

• We adapt the block frequency profiling in order to measure the WP metric.

• A relaxation algorithm is proposed for lowering the overhead of the work profil-

ing, with a controlled trade-off between accuracy and overhead.

• A whole program relaxation is proposed in order to further reduce the overhead

of the work profiling.

1.3 Thesis Outline

The remaining of this thesis is structured as follows. Chapter 2 provides background

information with basic concepts and theory used in this thesis Chapter 3 presents re-

lated work regarding iterative compilation using multiple inputs or applied in online

scenarios, profiling of work-based metrics or input size, and algorithms related to op-

timal profiling. Our main contributions are divided into two chapters. First, Chapter 4

presents both the work-based performance metric and the architecture for online iter-

ative compilation. Second, Chapter 5 describes the work profiling and techniques for

reducing its overheads. An experimental evaluation is provided in Chapter 6 with our

final remarks in Chapter 7.



Chapter 2

Background

This chapter provides a description of basic concepts and theory used in this thesis.

The first section presents basic concepts of graph theory. Graph theory is largely used

throughout the literature of compiler construction and compilation techniques. Sec-

ond is an overview of the LLVM compiler infrastructure, including the description of

compiler concepts useful for this thesis. In the sequence, it presents some of the early

work on iterative compilation and some of the work that addresses the challenges of its

optimisation-space exploration. Finally, this chapter also introduces the 0-1 knapsack

problem, some basic concepts of statics and linear regression.

2.1 Basic Concepts of Graph Theory

In graph theory, a graph is an ordered pair G = (V,E) comprising a vertex-set V and an

edge-set E, where E ⊂ V ×V . For any two vertices u,v ∈ V , vertices u and v are said

to be adjacent vertices if and only if {u,v} ∈ E. A graph is directed when each edge

is represented by an ordered pair, in which case a directed edge (u,v) ∈ E contains a

source vertex u and a target vertex v.

A path in a graph is a sequence of edges that compose a chain of adjacent vertices.

A path comprised by the edges {v1,v2},{v2,v3}, . . . ,{vk−1,vk} is usually denoted by

a sequence of the adjacent vertices such as (v1,v2,v3, . . . ,vk−1,vk). A cycle is a path

(v1,v2, . . . ,vk) in which all vertices except the origin v1 and the terminus vk are distinct,

with v1 = vk. Graphs with no cycles are called acyclic graphs. Directed acyclic graphs

are usually shortened to DAGs.

An undirected graph is connected if there is a path between any two vertices of

the graph. An undirected graph is called a tree if and only if it is both connected and

5



6 Chapter 2. Background

acyclic. For any graph G = (V,E), if a subgraph H of G is a tree and contains all

vertices in V , then H is called a spanning tree.

2.1.1 Maximum Spanning Tree

For weighted graphs, i.e., graphs for which their edges have weights associated with

them, a minimum or maximum spanning tree is a spanning tree for which the sum of

the weights that comprise the spanning tree is minimum or maximum, respectively.

The problem of finding the maximum (or minimum) spanning tree is a polynomial-

time function problem (Kruskal, 1956; Bazlamaçi and Hindi, 2001).

There are several efficient algorithms for solving the problem of finding a maxi-

mum (or minimum) spanning tree in a greedy manner1 (Bazlamaçi and Hindi, 2001).

A well-known efficient algorithm is Kruskal’s algorithm (Kruskal, 1956). Kruskal’s

algorithm works in a greedy manner with a single pass over the edges sorted in order

of increasing weights. It starts with a forest of singleton graphs, i.e., a set of disjoint

trees where each tree comprises a single vertex. The algorithm evaluates all edges in

increasing order, joining disconnected trees into larger trees. In the end, there is a

single tree connecting all vertices of the graph with minimum total weight.

1 // Input: Undirected Graph
2 // Output: Minimum Spanning Tree
3 kruskalMST(G) {
4 MST = set{}
5 UF = unionFindSet()
6 for v in G.vertices():
7 UF.makeSet(v)
8 sortedEdges = sortByWeight(G.edges(), order=increasing)
9 for {u,v} in sortedEdges:

10 //if u and v belong to distinct trees,
11 //join the trees with the edge {u,v}
12 if UF.find(u) != UF.find(v):
13 MST = MST union set{ {u,v} }
14 UF.union(u,v)
15 return MST
16 }

Listing 2.1: Kruskal’s algorithm for finding a minimum spanning tree

Listing 2.1 shows an implementation of Kruskal’s algorithm using an efficient

data structure called the union-find data structure (Hopcroft and Ullman, 1973; Tar-

jan, 1975). The union-find data structure provides three near-constant-time operations,

namely makeSet, find and union. It allows the Kruskal’s algorithm to efficiently keep

1The problem of finding a maximum spanning tree can be solved by the same solution that finds a
minimum spanning tree just by negating the edge weights.
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track of the trees contained in the forest and efficiently join two disconnected trees into

a single larger tree (Galil and Italiano, 1991).

2.2 LLVM Compiler Infrastructure

LLVM was originally proposed as a Low-Level Virtual Machine2, extending previ-

ous work on virtual instruction set architectures (Adve et al., 2003; Lattner and Adve,

2004). Since then, LLVM has evolved into an umbrella project that comprises a col-

lection of modular and reusable compiler and toolchain technologies. The main com-

ponents under the LLVM umbrella is the LLVM intermediate representation (IR) and

the LLVM Core libraries.

The LLVM compiler infrastructure implements the classical three-phase compiler

infrastructure, which consists of a frontend, an optimiser, and a backend, as depicted

in Figure 2.1. The frontend is responsible for parsing, validating and diagnosing errors

in the source code. This parsed source code is then translated into an intermediate

representation, which is the LLVM IR in this case. The optimiser is responsible for

doing a broad variety of transformations, which are usually independent of language

and target machine, to improve the code’s performance. The backend, also known as

the code generator, then translates the code from the intermediate representation onto

the target instruction set. It is common for the backend to also perform some low-level

optimisations that take advantage of unusual features of the supported architecture.

Source
Code

Frontend IR Optimiser IR Backend
Target
Code

Figure 2.1: Overview of the three-phase compiler infrastructure.

2.2.1 LLVM Virtual Instruction Set

LLVM IR is a low-level RISC-like virtual instruction set. It differs from other inter-

mediate representations (e.g. GCC’s GENERICS or the most recent GCC’s GIMPLE)

as it is defined as a first class language with well-defined semantics. Beyond being

defined as a language, LLVM IR is actually implemented in three isomorphic forms:

2Although LLVM was initially an acronym for Low-Level Virtual Machine, it is now a brand that
applies to the whole LLVM umbrella project.
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the textual format above, an in-memory data structure inspected and modified by opti-

misations themselves, and an efficient and dense on-disk binary bitcode format.

Unlike most RISC instruction sets, LLVM is strongly typed with a simple language-

independent type system. LLVM’s type system can be used to implement data types

and operations from high-level languages exposing their implementation behaviour to

all stages of optimisation. This type system includes the type information used by so-

phisticated techniques, such as algorithms for pointer analysis, dependence analysis,

and data transformations. LLVM also offers instructions for performing type conver-

sions and low-level address arithmetic while preserving type information. Further-

more, LLVM IR also differs from RISC instruction sets as some details of the machine

are abstracted away. For example, the calling convention is abstracted through call and

ret instructions and explicit arguments. Another significant difference from machine

code is that the LLVM IR has an infinite set of virtual registers (which are named with

a % character), instead of having just a fixed set of named registers.

The LLVM type system is considered one of the most important features of its

intermediate representation, as it enables several optimisations to be performed directly

on the IR, without having to do extra analyses on the side before the transformation.

The main first class types supported are: single value types, aggregate types, and labels.

Single value types consist of integers of arbitrary bit width (e.g. i32 denotes a 32-bit

integer), floating-point of commonly used width (e.g. half, float, double, and fp128),

pointers (e.g. i32*) and vector types. Vectors are used when multiple primitive data

are operated in parallel using a single instruction (SIMD). A vector type is represented

by a number of elements and an underlying primitive data type, e.g. <4 x i32> is a

vector of four 32-bit integer values. Aggregated types consist of arrays and structures.

Vectors are not considered to be aggregate types.

In addition to type information, LLVM IR also provides other high-level infor-

mation that is useful for effectively performing several code analysis and transforma-

tions. This includes explicit control flow graphs (CFG) (Allen, 1970) and an explicit

dataflow representation, by means of the infinite register set in static single assignment

form (Alpern et al., 1988; Cytron et al., 1989, 1991).

2.2.1.1 Control Flow Graph

A control flow graph (CFG) is a directed graph in which the nodes represent basic

blocks and the edges represent control flow paths, i.e. edges represent transfers of

control (jumps) between basic blocks. A basic block is a straight-line sequence of
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instructions having only one entry point, i.e. the first instruction to be executed in the

basic block, and only one exit point, i.e. the last instruction executed (Allen, 1970;

Cytron et al., 1991). Figure 2.2 shows an example of a CFG constructed from the code

in Listing 2.2.

2.2.1.2 Static Single Assignment Form

An IR is in static single assignment (SSA) form if and only if each virtual register

is assigned exactly once and every use of registers occurs after their definition. The

primary advantage of using the SSA form is that it simultaneously simplifies and im-

proves several compiler optimisations and analysis (Alpern et al., 1988; Cytron et al.,

1991). Most of the industrial-strength compilers for imperative programming language

rely heavily on the SSA form.

1 define i32 @odd_inc(i32 %arg) {
2 entry:
3 %rem = srem i32 %arg , 2
4 %cmp = icmp eq i32 %rem , 0
5 br i1 %cmp , label %if.then , label %if.else
6 if.then:
7 %add.1 = add i32 %arg , 1
8 br label %if.end
9 if.else:

10 %add.2 = add i32 %arg , 2
11 br label %if.end
12 if.end:
13 %ans = phi i32 [ %add.1, %if.then ], [ %add.2, %if.else ]
14 ret i32 %ans
15 }

Listing 2.2: An illustrative example of a function in textual LLVM IR. This function
returns the argument incremented by one if it is even or by two if it is an odd integer.

Listing 2.2 shows an example of a function written using textual LLVM IR. Names

starting with the @ character have a global scope, while names starting with % have a

local scope. As stated previously, LLVM IR is strongly typed, which means that every

virtual register is attributed a specific type (e.g. i32 %arg is of type i32, namely a 32-

bit integer) as well as every operation (e.g. add i32 expects all operands of type i32).

Instructions use the three address format, which refers to the use of three operands by

most of the instructions. However, instructions with fewer or more operands may oc-

cur, e.g. the ret instruction have fewer operands, while the phi and the call instructions

may have more than three operands.

Furthermore, the SSA form requires a special assignment statements called the

φ-function (see line 13 of Listing 2.2). The φ-function receives as argument a list
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of virtual registers from different control flow predecessors of the point where the φ-

function occurs. The control flow predecessors of each point in the CFG are listed in

some arbitrary fixed order, and the i-th operand of φ-function is associated with the i-th

predecessor. If control reaches the φ-function from its i-th predecessor, then the value

of the i-th operand is attributed in the assignment. Each execution of a φ-function uses

only one of the operands, but which one depends on the flow of control just before the

φ-function.

entry:
 %rem = srem i32 %arg, 2
 %cmp = icmp eq i32 %rem, 0
 br i1 %cmp, label %if.then, label %if.else

T F

if.then: 
 %add.1 = add i32 %arg, 1
 br label %if.end

if.else: 
 %add.2 = add i32 %arg, 2
 br label %if.end

if.end: 
 %ans = phi i32 [ %add.1, %if.then ], [ %add.2, %if.else ]
 ret i32 %ans

Figure 2.2: Control flow graph of the odd_inc function (see Listing 2.2).

In addition to virtual registers, LLVM also allows for stack allocated local vari-

ables. These are created by allocating data on the stack frame of the currently execut-

ing function. Data from the stack frame can be manipulated by using explicit memory

access operations. Figure 2.3 shows an implementation of the odd_inc function using

data allocated on the stack frame. This implementation avoids using the φ-function

by keeping the answer on the stack. This is the preferred way of generating LLVM

code by most frontends, as it simplifies the frontend’s own implementation without

incurring any serious detriment to the generated code.

LLVM provides an optimisation pass for promoting memory references to register

references (called -mem2reg). It promotes alloca instructions which only have loads

and stores as uses. An alloca is transformed by using dominator frontiers to place phi

nodes, then traversing the function in depth-first order to rewrite loads and stores as
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appropriate.

1 define i32 @odd_inc_stack(i32 %arg) {
2 entry:
3 %addr = alloca i32
4 %rem = srem i32 %arg , 2
5 %cmp = icmp eq i32 %rem , 0
6 br i1 %cmp , label %if.then , label %if.else
7 if.then:
8 %add.1 = add i32 %arg , 1
9 store i32 %add.1, i32* %addr

10 br label %if.end
11 if.else:
12 %add.2 = add i32 %arg , 2
13 store i32 %add.2, i32* %addr
14 br label %if.end
15 if.end:
16 %ans = load i32, i32* %addr
17 ret i32 %ans
18 }

Listing 2.3: An example of the odd inc function implemented using data allocated
on the stack frame.

2.2.1.3 Dominators and Natural Loops

A basic block u dominates another basic block v if and only if all paths to v must also

contain u. In other words, any basic block that dominates all predecessors of v also

dominates v.

B0

B1

B2 B3

B4

B5

header

latch
B6

exit

...

...

backedge

Figure 2.3: Example of a natural loop.

Natural loops are the cyclic structure in a CFG. First we define a backedge, which

is an edge (u,v) such that v dominates u. Hence, a natural loop can be defined by

the subgraph encompassed by its backedge. That is, for any given backedge (u,v),
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the subgraph consisting of all paths with origin v and terminus u, in addition to the

backedge itself, is a natural loop.

Figure 2.3 shows an example of a natural loop. Natural loops contain a header

basic block, which is the entry basic block of the loop, a latch basic block, which is the

origin of the backedge to the header of the loop. It also contains one or more exit basic

blocks, which are not part of the loop themselves but successors of basic blocks from

the loop. All basic blocks that comprise the natural loop can be found by a backwards

depth-first search that starts at the latch basic block and stops at the header.

2.2.2 Analysis and Transformation Passes

The LLVM optimiser offers several passes in order to provide analysis and transfor-

mation capabilities. These passes are written using the LLVM Core libraries and they

are as loosely coupled as possible. In other words, each pass is either a stand-alone

pass or it explicitly declares its dependencies among other passes, in the case where it

depends on some other analysis. A pass can also specify the analysis passes that will

be invalidated by its execution.

The LLVM Core libraries provide both analysis and transformation passes for dif-

ferent levels of the input program. These levels, in hierarchical order, are: module, call-

graph SCC, function, loop, single-entry single-exit region (or only region for short),

and basic block. A module is an entire translation unit (e.g., a C/C++ file with all

its headers included). A pass level only allows modification inside the component in

focus. For example: while a module-level pass can operate on the entire module at

once, a function-level pass prohibits any modification on the module-level (or other

functions).

Module
Function

BasicBlock
Instruction

Figure 2.4: The hierarchical levels in an LLVM input program. A call-graph SCC is a

particular pattern amongst the functions in a module. Similarly, a loop and a region are

particular patterns on the CFG of a function.

The LLVM Pass Manager is responsible for scheduling the passes and make sure

that the interactions among the passes are correctly fulfilled. For that purpose, when
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given a series of passes to execute, the Pass Manager uses the explicit dependency

information to satisfy these dependencies and optimise the execution of passes. The

Pass Manager aims at avoiding to repeat the execution of analysis passes. It keeps track

of which analyses are already available, which ones are invalidated, and which analyses

are pending. It also tracks the lifetimes of the analysis results and frees memory of

the analysis results, when appropriate, managing memory usage. For example, when

performing a series of function-level passes, it executes all these passes in only one

function, before moving to the next function, in order to improve the overall cache

behaviour of the compiler.

Notice, however, that the Pass Manager executes the transformation passes in the

exact same order as they were requested, as changing this order may result in a different

code. Deciding on the best order to execute the transformation passes is a well-known

problem called the phase-ordering problem (Touati and Barthou, 2006; Kulkarni and

Cavazos, 2012; Jantz and Kulkarni, 2014). The phase-ordering problem is not ad-

dressed by the Pass Manager.

2.3 Iterative Compilation and its Space Exploration

In this section, we present the basic concepts of iterative compilation and discuss some

of the early work on this research topic. We also consider some of the challenges on

reducing its compilation time and present recent work that addresses these challenges.

Iterative compilation is a well-known compilation technique that searches the opti-

misation space in order to find the best optimisation for a particular program. Iterative

compilation has the ability to adapt to new platforms, program and workload while still

having a systematic and simple optimisation process. It works by repeatedly evaluat-

ing a large number of compiler optimisations, by means of an execution-driven search,

until the best optimisation is found for a particular program (Kisuki et al., 1999; Fursin

et al., 2007; Chen et al., 2010).

Figure 2.5 shows an overview of the architecture necessary for performing itera-

tive compilation. After executing an optimised version of the program, profiling data

is provided as a feed-back to the iterative search. This profiling data can be as simple

as the program’s execution time, or more complex, including hardware performance

counters for cache behaviour, measurements of energy consumption, etc. The evaluator

can use the feed-back to rank the optimisations and select the best one. The optimisa-

tion generator can be a fixed sequence of optimisations or a dynamic mechanism for
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suggesting the next optimisation.

Optimisation
Evaluator

Program
Execution

Compiler Exe.

Prof.
Data

Input OutputProgram

Optimisation
Generator

Opt.

Opt.

Figure 2.5: A simplified overview of the architecture of an iterative compiler.

Early work on iterative compilation has demonstrated its use for determining si-

multaneously optimal tile sizes and unroll factors for any given loop nest Kisuki et al.

(2000); Knijnenburg et al. (2004). These two transformations are highly interdepen-

dent with a very irregular optimisation space, as both of them affect, in different ways,

cache behaviour and instruction-level parallelism. Because of their close interaction,

with non-trivial trade-offs, designing a static cost model, that enables the compiler to

automatically select the best configuration, is a very laborious and impractical task.

Kisuki et al. (2000) propose the use of iterative compilation to address this problem,

where it is able to outperform several static techniques. However, its success comes at

the cost of a significant increase in compilation time, which involves several runs of

the program for the execution-driven search.

Despite the high cost of compilation time, there are scenarios where this approach

is highly attractive due to high-performance requirements, such as embedded sys-

tems and library codes. Moreover, iterative compilation was originally intended to

be applied in an offline scenario, where the software vendor optimises the program

before shipping, the compilation time can be amortised across the number of products

shipped, the lifetime of the product, or a much larger number of executions in produc-

tion Kisuki et al. (1999, 2000); Chen et al. (2010). It is also useful in contexts where

the underlying architecture changes frequently, as the iterative search dismisses the

arduous task of manually optimising the program for the new platform.

Numerous researchers have addressed the problem of reducing the optimisation

space. For the same problem of selecting optimal tile sizes and unroll factors, Knij-

nenburg et al. (2004) suggest the use of a cache model to avoid executing candidates

during the execution-driven search of iterative compilation. By querying the cache
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model, the compiler is able to rank the optimisation candidates, filtering out candi-

dates below a given threshold. Their results show that it is possible to reduce the

number of executions by up to about 70%, without a significant degradation of the

resulting optimisation.

Agakov et al. (2006) suggest using machine learning techniques to speed up it-

erative compilation. They propose a mechanism that learns a predictive model from

a training set of benchmarks. This predictive model will later be used for predicting

regions of the optimisation space that are more likely to contain promising results.

Their approach is able to significantly reduce the number of executions necessary for

achieving good performance improvements with the iterative search.

More recently, Ogilvie et al. (2017) have proposed a strategy based on active learn-

ing techniques to focus the search on promising optimisation candidates. It avoids

redundant candidates by using high-quality models which based on a combination of

optimisation settings to predict the runtime of the training benchmarks.

The problem of reducing the optimisation space is out of the scope of this thesis.

Having a better search strategy would only improve our mechanism for online iterative

compilation.

2.4 0-1 Knapsack Problem

The 0-1 knapsack problem is a well known NP-hard problem in combinatorial optimi-

sation Martello et al. (2000). For a given set of n items, where each item has a profit

pi and a weight wi, the problem consists of selecting a sub-set of the items, such that

the total weight of the sub-set does not exceed a pre-defined maximum capacity c and

whose total profit is a maximum. Although the general knapsack problem allows to

repeatedly pack the same item, in the 0-1 knapsack problem each item can only be

selected once, always considering the maximum capacity. This problem is represented

by the following integer linear programming model:

maximise
n

∑
i=1

pixi

subject to
n

∑
i=1

wixi ≤ c

xi ∈ {0,1}, i ∈ {1, . . . ,n}

where xi takes a value 1 if and only if item i is packed.
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Because it is an NP-hard problem, there is no known algorithm with polynomial-

time complexity in all cases. The brute force algorithm evaluates all sub-sets of the

items, resulting in a search over a full binary tree with a complexity of O(2n). However,

this problem has been thoroughly studied, and several exact algorithms for its solution

have been proposed in the literature. These exact algorithms are mainly based on two

approaches, namely branch-and-bound or dynamic programming (Martello and Toth,

1977; Martello et al., 1999).

The branch-and-bound approaches usually consist in computing an upper bound for

each node of the tree. This upper bound is then used to prune unpromising branches

by comparing it to the current best solution. A common strategy is to sort all items

in decreasing order of their ratio of profit per unit weight, which allows for efficiently

computing upper bounds using a greedy approach and also tends to maximise pruning

opportunities (Martello and Toth, 1977; Martello et al., 2000).

There are also many heuristics for efficiently selecting the sub-set of items while

trying to maximise the total profit. For example, a greedy heuristic attempts to max-

imise the total profit by sorting all items based on their profit-weight ratio and then

eagerly selecting all items allowed by the maximum capacity as it iterates over the

sorted items, in a single pass (Dantzig, 1957). This greedy heuristic have a complexity

of O(n logn+ n), or just O(n logn) for short. Although heuristics are not guaranteed

to find the best solution, they usually tend to find good or close to optimal solutions

efficiently.

2.5 Basic Concepts of Statistics

This section describes basic statistical concepts used throughout this thesis. In partic-

ular, it defines confidence intervals and linear regression.

Confidence intervals are estimates of intervals possible for the true value of the

unknown population parameter. For a given sample of a population and an estimate

of the parameter value, the confidence interval provides an estimate for which the true

value of the population parameter will be within the confidence interval limits. Larger

sample sizes usually results in better estimates of the population parameter. For an

input sample x of size n, the confidence interval CI for a confidence of α is defined as:
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x =
1
n

n

∑
i=1

xi

σ =

√
∑

n
i=1 (xi− x)2

n−1

CI = x± z1−α

2

σ√
n

(2.1)

where x is the mean of the input sample and σ is its variance. This confidence interval

assumes a Gaussian distribution of the true population, for which the z1−α

2
factor is

used. For smaller input samples the Student’s t-distribution can be applied, which

produces slightly wider confidence intervals to compensate for the for the fact that the

variance of the input sample and the true population can differ significantly.

2.5.1 Linear Regression

In statistics, for a known dataset {yi,xi,1,xi,2, . . . ,xi,k}n
i=1 of size n, a regression model

creates a relation between the dependent variables yi and the input variables xi, j, also

called regressors, such that

yi ≈ f (xi,1,xi,2, . . . ,xi,k)

A well-known regression model is the linear regression model, which assumes that

there is a linear relation between regressors and the dependent variables. In other

words, it assumes that function f has the form

yi = εi +
k

∑
j=1

β jxi, j

where β j are unknown parameters, also called regression coefficients, and εi are error

terms.

For a given dataset, the regression coefficients and an intercept term ε can be esti-

mated. These estimated parameters can then be used to predict the dependent variable

yi for new input variables xi, j, not in the dataset.

There are many algorithms for parameter estimation, with different aspects and

trade-offs (Seber and Lee, 2012). The linear regression model has been widely studied

in the literature and describing specific algorithms for fitting the regression is out of

the scope of this thesis.
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Related Work

This chapter discusses related work regarding the main contributions of this thesis.

Section 3.1 presents previous work on iterative compilation that consider online sce-

narios, optimisation across multiple inputs, or related challenges. In Section 3.2, we

discuss related work that proposes work-based metrics for different purposes. Finally,

Section 3.3 presents the main literature on optimal profiling.

3.1 Iterative Compilation

Until recently, most of the existing work had been focusing on finding the best opti-

misation through repeated runs using a single input. Although they demonstrate the

potential of iterative compilation, in real scenarios the user rarely executes the same

input dataset multiple times (Bodin et al., 1998; Kisuki et al., 1999; Stephenson et al.,

2003; Kulkarni et al., 2004; Agakov et al., 2006). Applying iterative compilation in

light of a single input may not result in a good performance when executing the opti-

mised code with different inputs.

Most of the real world applications are complex enough so that a single input case

does not capture the whole range of possible scenarios and program behaviour (Haneda

et al., 2006; Fursin et al., 2007; Chen et al., 2010, 2012b). Because programs can

exhibit behaviours that differ greatly depending on the input, using a single input for

iterative compilation can produce a poor performance when executed with different

inputs.

For this reason, researchers have been studying the impact of using multiple in-

put datasets for performing iterative compilation. Chen et al. (2010, 2012b) evaluate

the effectiveness of iterative compilations across a large number of input test cases.

19
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Their main motivation is to answer the question: How data input dependent is iterative

compilation? When selecting the best optimisation sequence for each input of each

program, these optimal optimisation sequences are program-specific and yield average

speedups up to 3.75× over the highest optimisation level of compilers, namely -O3.

Their results show that, for all the evaluated benchmarks, it is possible to find an opti-

misation sequence that achieves at least 83% of the maximum speedup across all input

test cases. In other words, although the best optimisation sequences are both program

and input-dependent, it is possible to find a program-specific optimisation sequence

that achieves good performance on average.

When optimising a program, the main method for iterative compilation used by

Chen et al. (2010, 2012b) evaluates each combination of compiler optimisations across

all the available inputs, i.e., if N is the number of input test cases and M is the total

number of combinations of compiler optimisations, they perform a total of O(NM)

runs of the program being optimised. Furthermore, they use a pre-defined set of only

300 different combinations of compiler optimisations, which represents a very small

sample of the optimisation search space for most modern compilers, e.g. LLVM has

56 distinct optimisation passes and GCC has about 47 high-level (SSA form) optimi-

sation passes and about 25 low-level (RTL) optimisation passes, which in both cases

result in much more than 250 distinct combinations of compiler optimisations, without

considering repetition.

Some recent work (Chen et al., 2012a; Fang et al., 2015) have applied the same

idea of performing input-dependent iterative compilation to distributed applications on

data centres. In summary, each worker receives a subset of the input dataset, called

the evaluation dataset, to perform an online iterative compilation of the code being ex-

ecuted. Each worker performs the same the method for iterative compilation used by

Chen et al. (2010, 2012b), i.e., they evaluate each combination of compiler optimisa-

tions across all the evaluation dataset. However, because the optimisation is performed

online, they usually consider a small evaluation dataset and a small number of compiler

optimisations.

Fursin et al. (2007) addressed the problem of comparing the effect of two optimi-

sations on two distinct inputs. For that purpose, they proposed to use instructions per

cycle (IPC) as the metric for performing such comparison. Their results show that us-

ing IPC seems promising as a robust metric for iterative compilation across large input

datasets. However, some specific optimisation techniques may affect the use of IPC

as a robust metric, and especially IPC has been shown to provide poor performance
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estimation for multi-threaded programs (Alameldeen and Wood, 2006; Eyerman and

Eeckhout, 2008). In particular, IPC can give a skewed performance measure if threads

spend time in spin-lock loops or other synchronisation mechanisms. Some existing

work on performance assessment suggests that total execution time should be used for

measuring the performance of multi-threaded programs (Alameldeen and Wood, 2006;

Eyerman and Eeckhout, 2008). Alameldeen and Wood (2006), in particular, suggest

that a simple work-related metric should be used if the unit of work is representative

enough. Work-related metrics have already been largely used for measuring the perfor-

mance of throughput-oriented applications, for other applications, however, choosing

an appropriate unit of work can be more challenging (Alameldeen and Wood, 2006).

3.2 Work and Input Size Metrics

In the context of computer architecture research, Alameldeen and Wood (2006) sug-

gested work-based metrics as a substitute for IPC. In particular, they propose the use

of both time per work unit and work units per time. For example, they suggest a metric

based on transactions per minute for throughput-oriented applications. For iterative

scientific applications, they suggest measuring time per iteration. Choosing an appro-

priate unit of work is a key aspect of enabling work-based metrics to accurately predict

performance (Alameldeen and Wood, 2006).

In the context of experimental algorithmics, previous work has proposed profiling-

based techniques to estimate input sizes (McGeoch, 2007; Zaparanuks and Hauswirth,

2012; Coppa et al., 2014). Coppa et al. (2014), in particular, propose the concept of

read memory size for automatically estimating the size of the input passed to a routine,

where read memory size represents the number of distinct memory cells first accessed

by a read operation. In other words, the read memory size metric measures the size of

the useful portion of the input’s memory footprint. However, because we are interested

in the amount of computational work performed in respect of a given input, the memory

footprint of the input may not always have a direct correspondence to the amount of

computational work.

Goldsmith et al. (2007) use block frequency as the measure for performance for

empirically describing the asymptotic behaviour of programs, which is known as em-

pirical computational complexity. Block frequency is a relative metric that represents

the number of times a basic block executes (Ball and Larus, 1994, 1996). They argue

in favour of block frequency due to its portability, repeatability and exactness, since
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it does not suffer from timer resolution problems or non-deterministic noises. Block

frequency also has the advantage of being efficiently profiled by means of automatic

code instrumentation (Knuth and Stevenson, 1973; Ball and Larus, 1994).

However, in the context of comparing different compiler optimisations, although

block frequency would be able to capture aspects of optimisations that simplify the

control-flow graph (CFG), measuring work at the basic block resolution would not

capture effects of optimisations at the instruction level. Because of that, in this thesis,

we extend the idea of using basic block frequency to measure computational work by

also considering the computational cost of each basic block. The computational cost

of a basic block is given by weighting the instructions that it contains.

3.3 Program Profiling

Program profiling concerns with the acquisition of dynamic information collected dur-

ing the program’s execution. Since early work, program profiling has been used mainly

to find performance bottlenecks and to focus optimisations. Knuth (1971) introduces

program profiling as a table of frequency counts that records execution frequency of

each statement during a typical run of a program. Since then, program profiling has

been widely used in optimising compilers. For example, most of the industrial-strength

compilers provide block frequency profiling, where it records the execution frequency

of each basic block in the program.

In order to profile block frequency, the program can be instrumented with counters

that determine how many times each basic block in a program executes. A naive in-

strumentation would consist basically of having a counter for each basic block which is

incremented every time the basic block is reached. Although the naive instrumentation

was commonly used in practice (Knuth, 1971), it is a very invasive instrumentation

that imposes an unnecessarily high overhead in the instrumented program. An optimal

instrumentation based on the principle of conservation of flow (Kirchhoff’s first law1)

have been originally proposed by Nahapetian (1973) and Knuth and Stevenson (1973).

While Knuth and Stevenson (1973) proposed an optimal solution for basic block pro-

filing with vertex counters, Ball and Larus (1994) showed that an optimal basic block

profiling with edge counters provides the best instrumentation for block-frequency pro-

filing. Further overhead reduction of the optimal instrumentation was later proposed

1Gustav Kirchhoff defined two equalities about electric circuits, known as Kirchhoff’s circuit laws.
The first one is about current and the second about potential difference.
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by placing the counters in edges that are less likely to be executed Forman (1981); Ball

and Larus (1994).

Definition 3.3.1 (Kirchhoff’s first law). The amount of flow into a vertex equals the

amount of output flow, i.e. the sum of the incoming edges of a vertex equals the sum

of outgoing edges of the same vertex.

The optimal instrumentation places probes in edges as the basic block frequency

can be derived by summing either the flow of the incoming or outgoing edges. How-

ever, it uses the Kirchhoff’s first law in order to place probes in a subset of the edges

that allows to later infer the flow of all edges. Previous work has shown that a set of

edges represents the minimum number of probes for profiling block frequency if and

only if the complementary set of edges forms a spanning tree (Nahapetian, 1973; Ball

and Larus, 1994). In other words, after determining a spanning tree of the CFG, probes

need to be placed only in the edges from the complement of a spanning tree, usually

called cotree. Because the edge frequencies satisfy Kirchhoff’s first law, each edge

flow can be uniquely determined as an algebraic sum of the known edge flows from

the cotree (Nahapetian, 1973; Ball and Larus, 1994).

1 // Inputs: CFG with the known edges flows from
2 // the cotree (collected probes).
3 // Output: Updated CFG with all edge flows.
4 populateEdgeFlows(G) {
5 changed = true
6 while changed:
7 changed = false
8 for B in G.vertices():
9 unIN = count( G.unknownIncomingEdges(B) )

10 unOUT = count( G.unknownOutgoingEdges(B) )
11 if unIN==0 and unOUT==1:
12 //sum known incoming and outgoing edges in B
13 sIN = sum( G.incomingEdges(B) )
14 sOUT = sum( G.outgoingEdges(B) )
15 //update unknown outgoing edge in B with (sIN-sOUT)
16 G.setUnknownOutgoingEdge(B, (sIN-sOUT))
17 changed = true
18 if unIN==1 and unOUT==0:
19 //sum known incoming and outgoing edges in B
20 sIN = sum( G.incomingEdges(B) )
21 sOUT = sum( G.outgoingEdges(B) )
22 //update unknown incoming edge in B with (sOUT-sIN)
23 G.setUnknownIncomingEdge(B, (sOUT -sIN))
24 changed = true
25 }

Listing 3.1: Post-processing of the CFG for populating all edge flows based on the
collected probes.
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The optimal block-frequency instrumentation happens in two main stages: (i.) Be-

fore execution: The code is instrumented with the edge counters, i.e., it requires one

global counter for each edge selected to contain a probe. (ii.) After execution: The

information from the recorded probes is propagated in the CFGs of the program. List-

ing 3.1 shows the algorithm for the post-processing of a CFG, which requires the pro-

filing information collected by the probes.

Listing 3.1 is guaranteed to terminate because the probed edge flows on the com-

plement of a spanning tree are necessary and sufficient to compute all edge flows (Na-

hapetian, 1973; Forman, 1981). Intuitively, if all the edge flows are known for the

complement of a spanning tree then at any leaf of the spanning tree there is only one

unknown edge flow. This unknown edge flow can be calculated by Kirchhoff’s first

law. This process repeats until all the unknown edge flows have been calculated. Al-

though this instrumentation algorithm is proved to produce the optimal placement of

probes for well-structured CFGs, it may produce a sub-optimal placement for some

unstructured CFGs (Ball and Larus, 1994).

This briefly described proof suggests that the edges can be more efficiently pop-

ulated by a bottom-up propagation in the spanning tree. By performing a post-order

traversal of the spanning tree, i.e. starting from the leaves, we can then apply the flow

equation from the Kirchhoff’s first law. At each node of the spanning tree, we first

sum the known incoming and outgoing edges, and then the unknown edge flow will by

computed by subtracting the minimum of the two sums from the maximum (as before).

This bottom-up propagation allows to populate the edge flows in a single pass over the

basic blocks.

Forman (1981) and Ball and Larus (1994) propose to optimise the placement of the

probes with respect to edges that are less likely to be executed. It works by considering

a weighting that assigns a non-negative value to each edge in the CFG. The overhead

cost of profiling a set of edges is considered to be proportional to the sum of the weights

of the edges. These weights can be obtained either by empirical measurements from

previous executions or by static estimates at compile-time. In order to minimise the

profiling overhead, the instrumentation computes the maximum spanning tree to avoid

probing in frequently executed edges.

Listing 5.9 presents the algorithm for the optimal placement of probes. If present,

it uses edge-frequency profiling from previous executions, otherwise, it uses static

estimates of edge frequencies. Afterwards, it makes use of the edge frequencies for

computing the maximum spanning tree. LLVM implements Kruskal’s algorithm using
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the union-find data structure (see Listing 2.1) for computing the maximum spanning

tree of the CFG. Only edges in the cotree are instrumented.
1 // Input: CFG
2 instrumentCFG(G) {
3 if not hasEdgeFrequency(G):
4 estimateEdgeFrequency(G)
5 T = MaxSpanningTree(G)
6 for e in G.edges()-T.edges():
7 placeProbe(e)
8 }

Listing 3.2: Optimal placement of probes for block frequency.

Because edges in a CFG are abstractions for a transition of control flow, the actual

code for the probes needs to be placed in one of the endpoints of instrumented edges.

Listing 3.3 selects which basic block of an edge will be instrumented. Critical edges

are split, inserting a new basic block between its endpoints. Critical edges are edges

from a basic block that contains multiple successors to a basic block that contains

multiple predecessors.
1 // Input: edge selected for instrumentation
2 placeProbe(e){
3 (B1, B2) = e
4 if B1 is virtual:
5 insertProbe(B2)
6 else if B2 is virtual:
7 insertProbe(B1)
8 else if countSuccessors(B1) <=1:
9 insertProbe(B1)

10 else if e is not critical:
11 insertProbe(B2)
12 else
13 B = splitCriticalEdge(e)
14 insertProbe(B)
15 }

Listing 3.3: For a given edge, this procedure selects which basic block to place the
instrumented code. If the edge is critical, an intermediate basic block is created for
the instrumentation.

Notice that when instrumentation is performed guided by empirical measurements

from previous executions, it means that edge-profiling information is used in order to

produce a better edge-profiling instrumentation. The next section presents the main

algorithms for producing static estimates for the weights of the edges in a CFG.

3.3.1 Static Estimates of Edge Frequencies

Ball and Larus (1993) presented a simple algorithm that predicts the outcome of con-

ditional branches with a reasonably good accuracy. For this purpose, they used several
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branch heuristics that were derived by measuring, on a large number of programs, the

probability of branches being taken in respect of some ad-hoc features from the pro-

grams. Their algorithm selects, for each branch, the first heuristic that applies to the

branch, in a given priority order of the heuristics. The ad-hoc heuristics defined by

Ball and Larus (1993) are:

Loop branch heuristic (probability 88%): Probability of an edge back to a loop’s

head being executed.

Loop exit heuristic (probability 80%): Probability that a comparison inside a loop

will not exit the loop. This heuristic does not apply to latch blocks, i.e. basic blocks

that contain a branch back to the header of the loop.

Pointer heuristic (probability 60%): Probability that a comparison between two

pointers, where one of them can be a null pointer, will fail.

Opcode heuristic (probability 84%): Probability that a comparison of an integer

being less than zero, less than or equal to zero, or equal to a constant will fail.

Guard heuristic (probability 62%): For a comparison with a register as operand,

where the register is defined in a successor basic block which is not a post-dominator.

The probability that the successor basic block is reached.

Loop header heuristic (probability 75%): Probability of reaching a successor block

that is a loop header (or pre-header) but not a post-dominator.

Call heuristic (probability 78%): Probability of reaching a successor block that is

not a post-dominator but contains a function call.

Store heuristic (probability 55%): Probability of reaching a successor block that is

not a post-dominator but contains a store instruction.

Return heuristic (probability 72%): Probability of reaching a successor block that

contains a return instruction.

Wu and Larus (1994) proposed an algorithm for statically estimating edge frequen-

cies, which improves on the work of Wagner et al. (1994) and Ball and Larus (1993).

This algorithm is able to combine several heuristics of the outcome of a branch into

an estimated probability of the branch being taken. Wu and Larus (1994) use the

ad-hoc heuristics defined by Ball and Larus (1993) as their initial predictions. They

also use the Dempster-Shafer theory (Shafer et al., 1976) that provides the necessary

mathematical technique for combining evidence from the different heuristics in order

to produce more accurate estimates. These branch probabilities can then be used to

estimate execution frequencies for all the edges in a CFG.
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Online Iterative Compilation

This chapter describes the overall architecture for the online iterative compilation

guided by the work-based performance metric. Section 4.1 defines the work-based

performance metric, with a focus on how it enables the comparison between different

optimised versions of a program. Section 4.2 details the infrastrcture necessary for

performing online iterative compilation.

4.1 Work-based Performance Metric

In this section we define the work-based performance (WP) metric proposed for com-

paring different optimised versions of a program when executing with different inputs.

We define the performance metric as the ratio between the amount of work, ∆W , per-

formed during a period of time, ∆t.

P =
∆W
∆t

By measuring the amount of work done per unit of time, we reduce the impact of

input-dependent aspects and focus instead on the efficiency of the optimised program.

For this metric, the main challenge is to precisely define what represents work. As

discussed in Section 3.2, many work metrics have been presented in the literature,

such as block frequency and others. However, for comparing the performance benefits

of different compiler optimisations on a program, although block frequency would be

able to capture aspects of optimisations that simplify the control-flow graph (CFG),

we argue that measuring work only at the basic block resolution would not be enough

for capturing the effects of optimisations at the instruction level. For this reason, we

extend the idea of using basic block frequency to measure computational work by also

27
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considering the computational cost of each basic block.

To this end, we model the computational work ∆W as a linear equation based on

block frequency information and a cost model of the instruction set. Formally,

∆W = ε+∑
B

w(B) f (B)

where f (B) represents the frequency of basic block B and w(B) represents the compu-

tational work of executing B. We define the work of a basic block B as the sum of the

cost of its instructions, i.e.,

w(B) = ∑
i

wiNB(i)

where wi is the cost of instruction i and NB(i) is the number of occurrences of instruc-

tion i in basic block B.

In this simplified model, we consider that wi is constant across all programs and

executions, varying only between target architectures. On the other hand, NB(i) is a

program-dependent static value which is known at compile-time and f (B) is a dynamic

value known only at run-time, since f (B) is both program and execution dependent as

the execution frequency of a basic block can change when executing with different

inputs.

4.1.1 Estimating a Cost Model of the Instructions

Similarly to previous work (Giusto et al., 2001; Powell and Franke, 2009; Brandolese

et al., 2011), we derive the cost model of the instruction set by modelling the problem

as a multi-variable linear regression, where the regression coefficients are the costs of

the instructions and the regressors are computed as ∑B NB(i) f (B) for each instruction.

∆W = ε+∑
i

(
wi ∑

B
NB(i) f (B)

)
(4.1)

By having some empirical data after executing several benchmarks with different in-

puts, we can fit the linear model with this empirical data in order to obtain estimate

costs of the instructions. In order to fit the linear model, we measure the wall-clock

time when executing the training benchmarks described in Section6.1 with their re-

spective 1000 input datasets. For these measurements, the training benchmarks are

compiled without optimisation. The reason for using no optimisation, as discussed in

Section4.2, is because the amount of work must be only input dependent and consistent

between different optimisation sequences. This aspect is crucial for the work-based
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performance metric to enable a consistent comparison between the various optimisa-

tion sequences when executing with distinct inputs.

Our cost model has a total of 52 LLVM instructions1. Every program, in the set of

training benchmarks, was compiled twice: once including the necessary instrumenta-

tion for the block frequency profiling, which is required for deriving the linear expres-

sion defined in Equation 4.1; and a standard compilation without any optimisation or

instrumentation. For each input in the training dataset, the benchmarks were executed

once with the instrumented version for collecting the block frequency profiling, and

multiple times with the standard compilation just for measuring the wall-clock execu-

tion time, until the confidence interval was no larger than 1% for a 99% confidence.

After collecting these measurements, this data can be used to estimate the unknown

parameters in the linear model. Because we fit the linear model based on the wall-

clock execution time, the derived cost model can be interpreted as an estimate of the

execution time when the program is compiled without optimisations.
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Figure 4.1: Linear model fitted from empirical data. The mean absolute error (MAE) for

the fitted curve is seven milliseconds.

Figure 4.1 compare the work metric with the corresponding execution time for

1We do not model all LLVM instructions because some instructions are more common in optimised
programs, such as the vector instructions.
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some instances of the test benchmarks. Notice how the fitted model has a higher rel-

ative error for the instances with very short execution time, namely those that run for

less than one tenth of a second. The mean absolute error (MAE) for the fitted curve is

seven milliseconds.

4.1.2 Comparison with Instructions Per Cycle

The IPC metric has been widely used for studying performance benefits of hardware

optimisations. Although previous work has suggested the use of IPC for guiding itera-

tive compilation, in this section we argue in favour of the WP metric over IPC.

The IPC metric differs from the proposed WP metric in a key aspect: the IPC

metric is computed solely based on the final optimised program. When executing

different optimised versions of a program with the same input, both the number of

instructions and the number of clock cycles can change. For this reason, higher IPC

does not necessarily translate to shorter execution time (or even fewer clock cycles).

We can illustrate this fact with a very small example as shown in Table 4.1. This

example shows two versions of a program, namely P1 and P2, and their respective

measurements related to IPC. Although version P1 has twice the IPC of P2, P1 is one

cycle slower than P2. As this example illustrates, the IPC metric can be misleading

when compared different versions of the same program. This problem is only intensi-

fied when both the optimisation sequence and the input changes. In Chapter 6 we show

empirical evidence for this argument.

P1 P2

Number of Instructions 5 2

Number of Cycles 5 4

IPC 1 0.5

Table 4.1: Example that illustrates that a higher IPC does not necessarily translate to

shorter execution time.

On the other hand, WP computes the amount of work based on the unoptimised

version of the program, which means that it always measures the same amount of

work for the same input, regardless of the optimisations applied on the program. This

is a key aspect that enables the use of the WP metric for guiding iterative compilation,

because a higher WP, which represents work per unit time, naturally translate to shorter
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execution time. Moreover, previous work has also presented other arguments against

the use of IPC in similar use-case scenarios, as discussed in Chapter 3.

4.2 Online Iterative Compilation Infrastructure

Although iterative compilation had been originally proposed as an offline optimisation

strategy, it can also be adapted to work in online scenarios. Instead of selecting the

best optimisation sequence as part of the development time (pre-shipping) of a pro-

gram, a first version of the program is shipped together with an iterative compilation

mechanism. In the online scenario, the program is shipped with an initial optimisation

sequence and different optimisation sequences are evaluated as the end-user executes

the program. This optimisation strategy is also known as idle-time optimisation, as the

re-compilation happens between runs of the program.

LLVM is particularly suitable for iterative compilation as it makes possible to

cache a pre-compiled, but still unoptimised, version of the input program in the bit-

code format of the LLVM IR. This caching allows to speedup the time required for

re-compilation as it is able to bypass the frontend phase. If re-compilation time is crit-

ical, it would also be possible to keep only the hot portion of the code in the LLVM

bitcode format, while the remaining portion of the code is already compiled to the final

object code. However, this is out of the scope of this thesis and we always re-compile

the whole program.

Figure 4.2 shows an overview of the infrastructure required for applying online

iterative compilation using WP as the metric of choice for evaluating optimisation

sequences. The online iterative compilation follows as described bellow:

1. The program is pre-compiled to the LLVM bitcode format without optimisation.

2. The unoptimised program is instrumented for work profiling.

3. Execution-based optimisation search:

(a) The current optimisation sequence is used for the re-compilation of the

program.

(b) The program is executed with any input provided by the end-user. Dur-

ing the execution of the program, wall-clock time and the work metric are

recorded by profiling instrumentation.
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Figure 4.2: Overview of the execution engine for applying iterative compilation.

(c) If the recorded profiling for the current optimisation can be used to compute

an average performance measurement within a small confidence interval,

then a new optimisation sequence is generated. Otherwise, the same opti-

misation sequence is used for the next execution.

In this work, we focus mainly on the highlighted components. The Work Instru-

mentation phase focuses on providing a low-overhead instrumentation for profiling the

work metric. The instrumentation consists of adding a global counter to the program

which is used to accumulate the amount of work computed during the program’s exe-

cution, using the cost model of the instruction set. A detailed description of the work

instrumentation is presented in Section 5.

Notice how the Work Instrumentation phase is executed before performing any

optimisation to the program. It is critical so that the work profiling always measure

the same amount of work for a given input, regardless of the optimisation sequence

applied to the program. Because the instrumentation is performed before optimising

the program, it means that the work profiling derives the linear expression defined in

Equation 4.1 based on the unoptimised program. In other words, the basic blocks and

the number of occurrences of the instruction in the basic blocks reflect the unoptimised

program. This particular sequence of compilation guarantees that the amount of work

must is only input dependent, but consistent between different optimisation sequences.

As the name suggests, the component called Optimisation Selector is responsible
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for selecting which optimisation sequence to use for the next execution of the program.

It can either keep the same optimisation sequence used in the previous execution or

start monitoring the performance of a new optimisation sequence. An optimisation

sequence can be kept for multiple executions of the program in order to gather enough

measurement to compute an average performance with small statistical deviations, i.e.,

for which the confidence interval has a small range. We call by Input-Window Size the

number of executions performed using the same optimisation sequence.

4.2.1 Real Online Scenarios

In most online scenarios, it is common for periods of peak usage and idle periods. For

example, mobile devices are usually intensely used during the day, with some idle peri-

ods usually when the battery is being re-charged (Mpeis et al., 2016). Similarly, many

authors have also considered peak and idle (or underutilised) periods in the context of

data centres (Armbrust et al., 2010; Chen et al., 2012a).

The proposed infrastructure is very well suited for these real online scenarios2. In

particular, periods of peak usage could be used to monitor multiple runs of the program

using the same optimisation sequence, collecting the work profiling and measuring its

execution time, while periods of idleness or underutilisation could be leveraged to use

the profiling statistics for selecting better optimisations and re-compiling the program.

4.3 Summary

This chapter has formally defined the work-based performance metric, including a

comparison to the instructions per cycle metric. It also described the infrastructure

necessary for performing online iterative compilation guided by the work-based per-

formance metric, in addition to a discussion of its application in real online scenarios.

2 However, if idle time is almost non-existent, the proposed infrastructure can still be used by re-
compiling the program with a different optimisation while multiple runs of the program are being exe-
cuted.
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Work Instrumentation

In this chapter, we describe how the computation of the work metric can be performed

during runtime by means of instrumenting the code. In particular, we adapt the optimal

algorithm proposed originally for block-frequency profiling (Nahapetian, 1973; Knuth

and Stevenson, 1973; Ball and Larus, 1994). Afterwards, we propose a relaxed instru-

mentation that focuses on further reducing the overhead by considering the trade-off

between profiling accuracy and instrumentation overhead.

Because we define work as a linear equation on the block-frequency counters, it

is possible to embed its computation into the execution of the program. A naive in-

strumentation would consist basically of having a global counter that starts with the

interception value, ε, and each basic block increments its own cost into the global

counter. Although this instrumentation is easily implemented, it imposes a significant

overhead on the instrumented program. However, it is possible to insert fewer probes

by carefully placing the probes in a way that is possible to reconstruct the complete

profiling information (Knuth and Stevenson, 1973; Ball and Larus, 1994).

We adapt the optimal block-frequency instrumentation in order to perform the

work profiling efficiently. The proposed work instrumentation differs from the optimal

block-frequency instrumentation as the latter occurs in two stages: (i.) Before execu-

tion: The code is instrumented with counters for each probe. (ii.) After execution: The

information from the recorded probes is propagated in the CFGs of the program. In

contrast, the work instrumentation has a single counter, and it only requires the instru-

mentation before execution, without any post-processing of the recorded profiling.

Figure 5.1 shows a high-level overview of the complete work instrumentation al-

gorithm. The highlighted sections are introduced or improved by our work profiling

instrumentation. The instrumented code is assumed to be generated before optimising

35
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Figure 5.1: Overview of the work instrumentation algorithm.

the code. This assumption is based on three key points: (i.) it guarantees that the work

metric is independent of optimisation, i.e., the same input is always mapped to the

same amount of work, regardless of the optimisation; (ii.) it simplifies the code gen-

erator; (iii.) it leverages from the optimisations to further improve the instrumentation

code. Having a work metric that is independent of optimisation is the most important

reason for which we instrument the code before optimisations.

The optimal placement of the probes works exactly as previously described in Sec-

tion 3.3. It first computes the maximum spanning tree based on a weighing that assigns

a non-negative value to each edge in the CFG. These weights can be obtained either

by empirical measurements or heuristic estimations, and their goal is to avoid prob-

ing in frequently executed edges. Once we have the maximum spanning tree, probes

are placed on every edge not in the spanning tree. Figure 5.2 shows an example of a

CFG with a maximum spanning tree represented by the black edges, while the edges

highlighted in red represent the placement of the probes.

In contrast to the naive instrumentation where each basic block records only its

own amount of work, with the optimal profiling, the instrumented basic blocks need to

record an aggregated value of work that represents a path in the CFG. These values are

constructed with some instrumented basic blocks speculatively assuming some paths

while other probes correct when these assumptions are wrong (see for example w(P0)
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Figure 5.2: Example of a CFG with its minimum spanning tree in black and the basic

blocks highlighted in red represent the instrumented basic blocks with the placement of

the probes.

and w(P1) in Figure 5.2).

Because the algorithm for the optimal placement of the probes is proved to uniquely

compute the block frequencies by propagating the probe counts, we adapt this algo-

rithm (see Listing 3.1) in order to compose the aggregated values that will be instru-

mented in each probe, based on our model of computational work, ∆W , derived from

the basic block frequencies (see Section 4.1). We perform a similar propagation of the

probes in a symbolic fashion, as illustrated in Figure 5.2. This symbolic propagation

of the probes is implemented by the data-flow analysis described in Listing 5.1, and

the final aggregated values are extracted from the edge information as described by

Listing 5.2.

The data-flow analysis in Listing 5.1 keeps two sets for each edge, namely, the
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1 // Inputs: CFG with the known edges flows of the chords
2 // Output: Updated CFG with all edge flows
3 populateEdgeInfo(G) {
4 //the instrumented edges are the only known edge flows
5 for e in instrumentedEdges(G):
6 B = instrumentedBlock(e)
7 inc[e] = set{B}
8 dec[e] = set{}
9 knownInfo[e] = true

10
11 changed = true
12 while changed:
13 changed = false
14 for B in G.vertices():
15 unIN = count( G.unknownIncomingEdges(B,knownInfo) )
16 unOUT = count( G.unknownOutgoingEdges(B,knownInfo) )
17 if unIN==0 and unOUT==1:
18 //sum known incoming and outgoing edges in B
19 incSum = set{}
20 decSum = set{}
21 for predB in G.predecessors(B):
22 incSum = incSum union dec[G.getEdge(predB , B)]
23 decSum = decSum union inc[G.getEdge(predB , B)]
24 for succB in G.successors(B):
25 incSum = incSum union inc[G.getEdge(B, succB)]
26 decSum = decSum union dec[G.getEdge(B, succB)]
27 //update unknown outgoing edge in B
28 //with incSum and decSum
29 e = G.getUnknownOutgoingEdge(B,knownInfo)
30 inc[e] = incSum -decSum
31 dec[e] = decSum -incSum
32 knownInfo[e] = true
33 changed = true
34 if unIN==1 and unOUT==0:
35 //sum known incoming and outgoing edges in B
36 incSum = set{}
37 decSum = set{}
38 for predB in G.predecessors(B):
39 incSum = incSum union inc[G.getEdge(predB , B)]
40 decSum = decSum union dec[G.getEdge(predB , B)]
41 for succB in G.successors(B):
42 incSum = incSum union dec[G.getEdge(B, succB)]
43 decSum = decSum union inc[G.getEdge(B, succB)]
44 //update unknown incoming edge in B
45 //with incSum and decSum
46 e = G.getUnknownIncomingEdge(B,knownInfo)
47 inc[e] = incSum -decSum
48 dec[e] = decSum -incSum
49 knownInfo[e] = true
50 changed = true
51 }

Listing 5.1: Pseudocode of the data-flow analysis for assigning the values
computed in each probe of the instrumentation for the profiling of the work metric.
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1 // Inputs: 1) CFG with the known edges flows of the chords
2 // 2) Basic block targeted for probing
3 // Output: Work value to be incremented by the given probe B
4 instrValue(G, B, inc, dec) {
5 value = 0
6 for B in G.vertices():
7 incB = set()
8 decB = set()
9 for succB in G.successor(B):

10 incB = incB union inc[ G.getEdge(B, succB) ]
11 decB = decB union dec[ G.getEdge(B, succB) ]
12 if B in (incB - decB):
13 value = value + w(B)
14 if B in (decB - incB):
15 value = value - w(B)
16 return value
17 }

Listing 5.2: Pseudocode that describes how the edge information is used in order
to extract the value that will be computed in a given instrumented basic block BI .
This algorithm could equally be implemented based on the predecessors.

increment and the decrement sets. We consider that both sets represent the edge ex-

pressions shown in Figure 5.2, for which we define a symbolic sum by computing the

union of the increment and decrement sets, respectively, with the appropriate cancel-

lation of common elements. This data-flow analysis is based on the invariant that the

symbolic sum of all the incoming edges must equals the symbolic sum of the outgoing

edges. For example, the symbolic sum of the incoming edges of the basic block B8 is

P0−P1, where P3 is cancelled out.

Listing 5.2 reads the edge information for each basic block by computing the sym-

bolic sum of their respective incoming edges (or outgoing edges). From these edge

expressions, we are able to compose the aggregated value of the probes. The posi-

tive terms in the edge expression of a basic block indicate that the amount of work of

this basic block will be incremented in the probes represented by these positive terms.

Similarly, the negative terms indicate that the amount of work of this basic block will

be decremented in the probes represented by these negative terms. For example, be-

cause the edge expression for the basic block B8 is P0−P1, the amount of work of B8,

denoted by w(B8), is incremented in probe P0 and decremented in P1.
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5.1 Code Generation for the Instrumentation Probes

This section describes the code generator for the work instrumentation. Once we have

the placement of the probes as well as the aggregated value computed for each probe,

we insert the appropriate instructions for the probes of the work profiling. Because

the instrumented code is assumed to be generated before optimising the code, the

code generator has a straightforward code generation process. It produces the code

for the probes using a local variable as it tends to improve optimisation opportunities.

This variable acts as the local accumulator that will eventually be incremented into the

global work counter.

For every function, the code generator allocates memory on the stack frame for the

local work variable. In LLVM, allocated memory on the stack is automatically released

when the function returns, therefore there is no need to generate code for that purpose.

Afterwards, the local work variable is set to zero.
1 %local.work = alloca i32
2 store i32 0, i32* %local.work

Listing 5.3: Code for the entry point of a function.

For every probe, the code generator produces memory access operations in addition

to the actual increment of the local work counter. The value incremented to the local

counter is the value computed by Listing 5.2.
1 %r1 = load i32, i32* %local.work
2 %r2 = add i32 %r1, 8
3 store i32 %r2, i32* %local.work

Listing 5.4: Code for a probe that increments the local work counter.

Because it produces instrumentation code using a local variable, eventually this lo-

cal variable needs to be incremented into the global counter. This is performed at every

exit point of the function, even if the basic block with the exit point was not selected

for having a probe. For every exit point of the function, the code generator produces

simple memory access operations that load the current values of both the local and the

global counters, adds them together, and finally updates the global counter.
1 %r1 = load i32, i32* %local.work
2 %r2 = load i32, i32* @__work_counter
3 %r3 = add i32 %r1, %r2
4 store i32 %r3, i32* @__work_counter

Listing 5.5: Code at an exit point of a function.

For the special case where a probe belongs to a basic block which is also an exit

point of the function, the code generator leverages from this scenario to produce a code



5.2. Relaxed Instrumentation 41

for the probe that works in collaboration with the update of the global counter.
1 %r1 = load i32, i32* %local.work
2 %r2 = add i32 %r1, 273
3 %r3 = load i32, i32* @__work_counter
4 %r4 = add i32 %r2, %r3
5 store i32 %r4, i32* @__work_counter

Listing 5.6: Code for a probe that increments the local work counter and also
updates the global counter at an exit point of a function.

After optimisations, the instrumented code can benefit from some of the trans-

formations. For example, the optimisation pass for promoting memory to register

(-mem2reg) can eliminate the local variable such that the local work counter is only

kept in registers. The only explicit access to memory is performed when updating the

global work counter.
1 ...
2 ;If probes from multiple paths reach a given point ,
3 ;a phi operation is used for selecting the appropriate value.
4 ;Furthermore , the initial store of 0 is unnecessary.
5 %r1 = phi i32 [ 0, %entry ], [ %r2, %for.inc ]
6 ...
7 ;If there is only one value that reaches a given point ,
8 ;this value can be directly used.
9 %r3 = add i32 %r1, 273

10 %r4 = load i32, i32* @__work_counter
11 %r5 = add i32 %r3, %r4
12 store i32 %r5, i32* @__work_counter

Listing 5.7: An illustrative example of how -mem2reg can optimise the instrumented
code.

5.2 Relaxed Instrumentation

Although the optimal instrumentation significantly reduces the profiling overhead when

compared to the naive instrumentation, from an average overhead of 79% to 13%, in

some critical cases, even the optimal instrumentation can have an overhead of about

70% (see benchmark adpcm d in Figure 6.7). In order to further reduce the overhead in

these critical cases, we propose a relaxed instrumentation by trading off accuracy and

overhead. While the optimal placement of probes tries to place probes in edges that

are less likely to be executed, the relaxation focus on removing probes that are more

likely to be executed but add little to the work metric.

Figure 5.3 shows an overview of the relaxed instrumentation algorithm. The high-

lighted step is introduced by the relaxed instrumentation on top of the previously de-

fined optimal profiling. The relaxed instrumentation performs a post-processing on
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Figure 5.3: Overview of the work instrumentation algorithm, including the relaxation

technique.

the resulting instrumentation of the optimal algorithm. This post-processing identifies

probes that add little to the work metric, and removes their instrumentation. In or-

der to guarantee an upper bound for the dynamic error in the profiling measurement,

the relaxation algorithm applies a constrained post-processing on a per DAG (directed

acyclic graph) basis. By constraining the relaxation within each DAG by a maximum

allowed static error, it guarantees that the overall relaxation will also be constrained by

the same bound.

The relaxation starts by extracting DAGs (directed acyclic graphs) from the CFG,

as illustrated in Figure 5.4. First, the algorithm extracts all the subgraphs that represent

a loop or the outer most region of the function. Section 2.2.1.3 explains how loops can

be identified in the CFG. Afterwards, these subgraphs are transformed into DAGs by

ignoring the backedge and also by considering that any loop within the subgraph is

never executed, i.e., only the headers of the inner loops are actually included into the

DAG. Figure 5.4 shows a CFG partitioned into two DAGs (consider only basic blocks

and edges completely inside the yellow and green boundaries).
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Figure 5.4: Example of a CFG containing a loop and its decomposition into DAGs when

applying the relaxation. The DAGs are the subgraphs within the dashed boundaries.

1 // Input: CFG
2 relaxInstrumentation(G) {
3 for loop in G:
4 DAG = colapseInnerLoops(loop)
5 relaxInstrumentedDAG(DAG)
6 DAG = colapseInnerLoops(G)
7 relaxInstrumentedDAG(DAG)
8 }

Listing 5.8: Optimal placement of probes for block frequency.

For every DAG with a set of probes {P0,P1, . . . ,Pk}, we relax the profiling accuracy

by selecting a subset of the probes to be removed, subject to the maximum allowed

percentage error, M.

We model the relaxation as a 0-1 Knapsack problem:

maximise
k

∑
i=0

f (Pi)xi

subject to
k

∑
i=0

ε(Pi)xi ≤M

xi ∈ {0,1}, i ∈ {0, . . . ,k}

where f (Pi) is the execution frequency of probe Pi, xi denotes the probes selected for

removal, and ε(Pi) is the percentage error of removing probe Pi relative to the mini-

mum work value possible to compute in the DAG, i.e., if m is the minimum amount
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of work possible to be computed when executing the DAG, then ε(Pi) =
ω(Pi)

m . Be-

cause the percentage error is computed based on the path with the minimum amount

of work, ε(Pi) represents the maximum error possible that would be incurred when

removing probe Pi. Furthermore, by constraining the percentage error of every DAG

below a given threshold, we guarantee that the final error of the relaxation will always

be bounded by the threshold, as demonstrated by Proposition 5.2.1.

Proposition 5.2.1. Let ni be the number of times a given DAG i is executed, ri be the

total relaxation (amount of work removed) in DAG i, and mi be its minimum amount

of work. If ri
mi
≤ M for every i, then the final error of the relaxation will always be

bounded by the same threshold.

Proof. We can model the overall error of the relaxation as:

1− n1(m1− r1)+n2(m2− r2)+ . . .+nk(mk− rk)+ c
n1m1 +n2m2 + . . .+nkmk + c

That is,

1− n1m1 +n2m2 + . . .+nkmk + c
n1m1 +n2m2 + . . .+nkmk + c

+
n1r1 +n2r2 + . . .+nkrk

n1m1 +n2m2 + . . .+nkmk + c
=

n1r1 +n2r2 + . . .+nkrk

n1m1 +n2m2 + . . .+nkmk + c

If r j
m j

is the maximum ratio ri
mi

for every i, then

n1r1 +n2r2 + . . .+nkrk

n1m1 +n2m2 + . . .+nkmk + c
≤

n1r j +n2r j + . . .+nkr j

n1m j +n2m j + . . .+nkm j + c
≤

n1r j +n2r j + . . .+nkr j

n1m j +n2m j + . . .+nkm j

If N = max{ni for every i}, then

n1r j +n2r j + . . .+nkr j

n1m j +n2m j + . . .+nkm j
≤

Nr j +Nr j + . . .+Nr j

Nm j +Nm j + . . .+Nm j
=

Nkr j

Nkm j
=

r j

m j
≤M
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1 // Input: CFG
2 relaxInstrumentedDAG(DAG){
3 P = ProbesIn(DAG)
4 m = minWork(DAG,P)
5 K = createKnapsackModel(P,m)
6 Bag = solveKnapsack(K)
7 for B in (P-Bag):
8 removeProbe(B)
9 }

Listing 5.9: Optimal placement of probes for block frequency.

The necessary block-frequency information for optimising both the placement of

probes can be acquired from profiles of previous executions of the program or by a

static heuristic of the CFG during compilation.

For our experiments, we implemented two solvers for the 0-1 Knapsack problem:

the optimal brute-force solver; the greedy heuristic based on sorting the items (Dantzig,

1957). We use the brute-force solver for DAGs with a small number of probes and the

greedy heuristic when the number of probes is greater than a threshold. Some of the

benchmarks have DAGs with several hundreds of probes, which could result in a long

compilation time.

5.3 Whole Program Relaxation

In some cases, the proposed relaxation can be very conservative, because it considers

the static error of removing probe Pi relative to the minimum work possible of a DAG,

in order to be able to guarantee that the dynamic error will be bounded by a given

threshold. This conservatism can be overly restrictive in some cases, resulting in a

negligible overhead reduction but also causing just a negligible dynamic error to the

work profiling.

In some cases, this overly restrictive conservatism may be unnecessary. For these

cases, we propose an adapted version of the relaxation algorithm that operates on the

whole program. Traditionally, compilers optimisations are performed on the function-

level, or at best on a per module basis. Whole program optimisation (WPO) means that

the compiler considers all compilation units of the program and optimises them using

the combined knowledge of how they are used together.

The whole program relaxation works by using block-frequency profiling from pre-

vious executions. By having this profiling information, the whole program relaxation

is able to compute the error of removing a given probe in terms of the whole program’s
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execution, and then use this error values for selecting a subset of all the probes to be

removed.

For a program with a set of probes {P0,P1, . . . ,Pk}, we model the whole program

the relaxation as the following 0-1 Knapsack problem:

maximise
k

∑
i=0

f (Pi)xi

subject to
k

∑
i=0

ε(Pi)xi ≤M

xi ∈ {0,1}, i ∈ {0, . . . ,k}

where f (Pi) is the execution frequency of the instrumented basic block Pi, xi denotes

the probes selected for removal, M is the error threshold, and ε(Pi) is the percentage

error of removing probe Pi relative to the profiled global work, i.e., if ∆W is the work

value for the whole program’s execution, computed from the basic block frequencies

profiled from previous executions, the error for a given probe Pi is

ε(Pi) =
ω(Pi) f (Pi)

∆W
.

Contrary to the per DAG relaxation, the whole program relaxation is not guaranteed

to be bounded by the error threshold M, as it depends on the representativity of the

profiling information provided to the whole program relaxation.

5.4 Summary

This chapter has described the instrumentation algorithm for the profiling of the work

metric. We adapted the optimal algorithm proposed originally for block-frequency

profiling. Additionally, we also proposed two relaxation algorithms that focus on fur-

ther reducing the overhead by considering the trade-off between profiling accuracy and

instrumentation overhead. The first is a relaxation algorithm that works in regions of

functions and the second is a whole program relaxation algorithm.



Chapter 6

Experimental Evaluation

In this chapter, we discuss our experimental evaluation. First, we describe the bench-

marks with datasets used in the experiments. Afterwards, we discuss our results con-

cerning the instrumentations for profiling our work metric. Finally we present results

of the online iterative compilation.

We implemented the instrumentations in LLVM 4.01. All experiments use the

Clang/LLVM compiler suite. The target platform is a Linux-4.4.27 system with an

Intel Core i7-4770 3.40GHz Skylake CPU with 16 GiB RAM.

6.1 Benchmarks and Datasets

For the experimental evaluation, we have used a subset of the KDataSets benchmark

suite, which is the same benchmark and dataset suite used by Chen et al. (2010, 2012b).

The KDataSets contains 1000 different inputs for each one of its benchmark programs.

These benchmarks cover a broad spectrum of application scenarios, ranging from sim-

ple embedded signal-processing tasks to common mobile-phone and desktop tasks.

The different inputs try to capture distinct characteristics in terms of workload sizes

and how these workloads exercise different control flow paths. A summary of the

benchmarks and dataset suite is shown in Table 6.1.

The shaded (grey) benchmarks in Table 6.1 represent the benchmarks used for

training the cost model used for computing the weight of the instructions for the work

metric. These same training benchmarks were also used for collecting a fixed set of op-

timisation sequences for the iterative compilation. The remaining (white) benchmarks

1The implementation of the work profiling in LLVM is available at: https://github.com/
rcorcs/llvm-work-instr.

47

https://github.com/rcorcs/llvm-work-instr
https://github.com/rcorcs/llvm-work-instr
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Program LOC Input file size Input description

qsort 154 32K-1.8M 3D coordinates

jpeg d 13501 3.6K-1.5M JPEG images

jpeg c 14014 16K-137M PPM images

tiff2bw 15477

9K-137M TIFF images
tiff2rgba 15424

tiffdither 15399

tiffmedian 15870

susan c 1376

12K-46M PGM imagessusan e 1376

susan s 1376

adpcm c 210 167K-36M WAVE audios

adpcm d 211 21K-8.8M ADPCM audios

lame 14491 167K-36M WAVE audios

rsynth 4111 0.1K-42M Text files

sha 197 0.6K-35M Files of any format

bitcount 460 - Numbers: random

dijkstra 163 0.06K-4.3M Adjacency matrices

patricia 290 0.6K-1.9M IP and mask pairs

mad 2358 28K-27M MP3 audios

ghostscript 99869 11K-43M Postscript files

stringsearch 338 0.1K-42M Text files

CRC32 130 0.6K-35M Files of any format

bzip2e 5125 0.7K-57M Files of any format

bzip2d 5125 0.2K-25M Compressed files

Table 6.1: Description of the KDataSets with 1000 inputs for each benchmark

(Chen et al. Chen et al. (2010, 2012b)).

are used for the experimental evaluation.

6.2 Evaluation of the Instrumentation

In this section, we evaluate the performance of the work instrumentation presented in

Chapter 5. We analyse the optimal work profiling as well as both relaxation algorithms.

6.2.1 Static Evaluation

We first compare static aspects of the instrumentation algorithms. The naive instru-

mentation always has 100% of the basic blocks instrumented, by definition. First,
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we evaluate the optimal work profiling compared to the relaxation algorithm applied

per DAG. Afterwards, we compare these profiling techniques with the whole program

relaxation.

Figure 6.1 shows the percentage of instrumented basic blocks for the optimal and

the relaxed instrumentation with different relaxation thresholds. While Figure 6.1 com-

pares the various instrumentation algorithms in respect of the naive instrumentation,

Figure 6.2 shows the improvement of the relaxation algorithm over the optimal instru-

mentation.
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Figure 6.1: Percentage of instrumented basic blocks for the optimal and the relaxed

instrumentation with different relaxation thresholds.

Even a small threshold of 2% is able to reduce the number of probes by an average

of 5% compared to the optimal algorithm. The sha benchmark was the only benchmark

for which a 2% threshold was not sufficient for further reducing the number of probes.

With a 5% threshold, the relaxation algorithm was able to improve over the optimal

instrumentation by an average of 7%, in terms of the amount of instrumented probes.

The static errors presented in Figure 6.3 indicate the amount of error expected by

the relaxation algorithm after reducing the number of probes. This figure shows both

the maximum (bars with light colours) and the average (bars with dark colours) static

errors observed when relaxing the instrumentation for each DAG of the benchmarks.

Notice that, in most cases, the average static errors are considerably lower than the

relaxation threshold, while the maximum static errors are usually close to the threshold.

The average static error shows that in a significant number of DAGs, the relaxation

was notably conservative. This conservatism will be especially evident in the dynamic

evaluation.
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Figure 6.2: Percentage of instrumented basic blocks for the optimal and the relaxed

instrumentation with different relaxation thresholds.
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Figure 6.3: Average and maximum static error expected for the work profiling, after

relaxing the number of probes.

The whole program relaxation tries to address this overly conservative aspect of

the relaxation algorithm. Figure 6.4 shows the percentage of probes, considering the

optimal profiling, that were instrumented in basic blocks that were never executed for

randomly selected inputs for each benchmark. Notice how most of the probes are never

executed. This happens mainly because these benchmarks contain functions which are

not called. For example, the benchmarks adpcm_c and adpcm_d have the same

code, where they differ only in their main function. This is also true for the susan_c,

susan_e, and susan_s benchmarks. Therefore, it is natural that some functions are

not executed with specific inputs.
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Figure 6.4: Percentage of probes instrumented in basic blocks that were never exe-

cuted, based on a randomly selected input for each benchmark.

Figure 6.5 shows the number of instrumented basic blocks, after applying a whole

program relaxation with a threshold of 5%, relative only to the probes from the optimal

profiling that are executed, based on a randomly selected input. We ignore the probes

placed in basic blocks that were never executed as they do not affect the measurement

of the amount of work.
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Figure 6.5: Percentage of instrumented basic blocks, after applying a whole program

relaxation, relative only to the probes from the optimal profiling that are executed, based

on a randomly selected input. In other words, it ignores the probes in basic blocks that

were never executed.

In order to investigate the effects caused to the instrumentation when varying the

relaxation threshold for both relaxation algorithms, we performed a full analysis of

the reduction in the number of probes varying the threshold from 0% up to 100%,
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Figure 6.6: Percentage of instrumented basic blocks, relative to the optimal profiling, for

both relaxation algorithms when varying the threshold from 0% up to 100%.

as presented in Figure 6.6. This figure shows the percentage of instrumented probes

relative to the optimal profiling. It is interesting to understand some of the aspects of

these results. In some cases, when increasing the threshold, the number of probes also

increased, e.g., as it is noticeable in the qsort benchmark. This happens when the larger
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threshold allows the 0-1 knapsack solver to exchange a large number probes for fewer

probes with higher execution frequency and also higher error. It is also interesting

to notice the highly conservative aspect of the relaxation algorithm that operates per

DAG, as all benchmarks remain with more than 40% of the same probes as the optimal

profiling, even with a relaxation threshold of 100%. This happens as the static error is

computed based on the path with the minimum amount of work possible in the DAG,

which can be very conservative in most cases.

On the other hand, the whole program relaxation can significantly reduce the num-

ber of probes. This is possible for two main reasons: first, there are several probes

which are never executed, as shown in Figure 6.4; second, the WPO relaxation relies

on profiling information from previous execution, which allows it to perform a more

aggressive relaxation.

6.2.2 Dynamic Evaluation

For the evaluation of the performance overhead that the instrumentation incur to the

benchmarks, we measure the wall-clock time of the benchmarks when compiled with

the default -O3 optimisation. For each benchmark, we compute the average overhead

over all its 1000 input dataset. When measuring the wall-clock time for each input,

in order to reduce noise, we execute the same input until we have a statistically sound

measurement, i.e. we execute until we have an interval no larger than 1% with 99%

confidence. Figure 6.7 shows the performance overhead imposed by the work instru-

mentation on the benchmarks when compared to their non-instrumented counterparts.

Figure 6.8 indicates the improvement of the relaxation algorithm over the optimal in-

strumentation, regarding the reduction in overhead.

The WPO relaxation was performed using profiling information for every specific

input, which provides the perfect information to perform the WPO relaxation. This

means that the experiments show its best performance enabled by having perfect pro-

filing information.

Figure 6.8 shows that the relaxation algorithm, with 5% threshold, is able to im-

prove an average of 48% over the optimal instrumentation, and the WPO relaxation

achieves an average of 2× improvement over the optimal instrumentation. While the

optimal profiling has a maximum overhead of almost 60%, the work profiling with a

relaxation of 5% threshold has an overhead of less than 20% for all benchmarks, with

the WPO relaxation reaching an average overhead of only 5%, compared to an average
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Figure 6.7: Overhead of the instrumentations compiled with -O3.
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Figure 6.8: Overhead of the instrumentations compiled with -O3. Notice that the aver-

age of the ratios does not equal the ratio of the averages.

of 12% for the optimal profiling.

Furthermore, these improvements can be obtained while incurring very little dy-

namic error, as shown in Figure 6.9. This result confirms the overly conservative aspect

of the relaxation algorithm applied per DAG, while the WPO relaxation is significantly

less conservative. Because we performed the WPO relaxation having perfect profiling

information, its dynamic error was always below the 5% thresholds. Although it is not

guaranteed by the algorithm, profiling representative inputs should also result in small

dynamic errors.
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Figure 6.9: Dynamic error of the work profiling averaged over the 1000 inputs, after

relaxing the number of probes.

6.2.3 Case Studies

Analysis of the Best Improvement in Overhead: adpcm_d

read main

getenv atol adpcm_decoder perror exit

adpcm_coder llvm.memcpy.i64 write

Figure 6.10: Call graph highlighting the maximum basic block frequency of each func-

tion, using a cool/warm colour map.

The adpcm_d benchmark is the most critical case amongst the evaluated bench-

marks, with an overhead of about 59% for the optimal instrumentation. Figure 6.10

shows the heat call-graph of the adpcm_d benchmark, with each function coloured

based on their maximum basic block frequency, using a cool/warm colour map. This

benchmark has a single hot function, namely the function called adpcm_decoder.

Moreover, it consists mainly of a single hot loop with several branches inside it, as

depicted by Figure 6.11. The relaxation algorithm is able to reduce this overhead

down to about 47% (with a static error threshold of 2%) and 14% (with a static error

threshold of 5%) by removing only one and two probes from the hot loop, respectively.

These overhead reductions represent a 20% and 4.5× improvement over the optimal
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algorithm, with 2% and 5% relaxation threshold respectively. The two relaxed probes

were placed in branches, inside the hot loop, with a high probability of being taken,

but with a small contribution to the total amount of work measured in the loop.
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Figure 6.11: CFG of the function that contains the hot loop of the adpcm_d benchmark.

Figure 6.12 shows all the probes necessary for the function that contains the hot

loop of the adpcm_d benchmark. Notice that the relaxation was able to remove all

probes with a static error lower than the 5% threshold. Because these probes were

placed in basic blocks with a considerable execution frequency, their removal resulted

in a significant reduction in performance overhead.



6.2. Evaluation of the Instrumentation 57

0.0 0.2 0.4 0.6 0.8
Basic Block Frequency 1e7

0

50

100

150

200

250

300

St
at

ic
 E

rr
or

 (%
)

Relaxed Probes
Instrumented Probes

Figure 6.12: Comparison between probe frequency and static error for the adpcm_d

benchmark. The red line marks the 5% threshold limit.

Analysis of the Abnormal Regression: susan_c

The susan_c presents an abnormal regression as relaxation seems to increase the

profiling overhead. This increase in profiling overhead is counter-intuitive because the

relaxation algorithms are able to reduce the number of instrumented probes. Although

we could not pinpoint the precise reason for this abnormal regression, we can provide

an analysis of this benchmark.

Figure 6.13 shows that most probes are rarely or never executed, in accordance with

Figure 6.4, with only a few probes being highly executed, and some of these frequently

executed probes were not removed by the relaxation algorithm.

Another important aspect to point out is the difference among the final CFGs after

applying the -O3 optimisation. Although relaxation does not directly alter the CFG,

it is important to notice that many optimisation passes make use of LLVM’s built-in

target-based cost model, which means that adding or removing instructions from basic

blocks may affect decisions during transformations of the code. For example, there

are optimisations for loop-unrolling, function inlining, and simplifications of the CFG,

that make use of this built-in cost model. Although this difference in the CFGs may not

be the only reason for the increase in overhead, it is one of the reasons, since changes

in the CFG may affect other compiler and hardware optimisations, such as instruction

caching.
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Figure 6.13: Comparison between probe frequency and static error for the susan_c

benchmark. The red line marks the 5% threshold limit.

6.3 Evaluation of the Online Iterative Compilation

In this section, we evaluate the online iterative compilation guided by the WP metric.

For comparison, we use four configurations2. In all configurations, the same optimi-

sation sequence is used for multiple inputs, using a dynamic input-window size, as

explained in Section 4.2. The average performance over the input window provides

an estimate for the overall performance of the optimisation sequence across distinct

inputs. The optimisation sequences are ranked based on their average performance,

and the best optimisation sequence is selected.

• Oracle-RM executes the program multiple times for each input, measuring the

real speedup for each optimisation sequence, and then uses the real speedup

over -O0 for comparing the optimisation sequences. The speedups are computed

based on the wall-clock time. In order to reduce noise, the program is executed

several times for the same input, until the confidence interval was no larger than

1% for a 99% confidence.

2A configuration using the WPO relaxation was not used due to the time necessary for executing the
experiments.
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• Oracle-PP represents an oracle with a perfect non-intrusive profiling. Although

it uses the WP metric for comparing optimisation sequences, this oracle also

avoids noise in its measurements by also executing the program multiple times

for each input. The first execution is used for profiling the work metric. The

remaining executions are used for measuring the wall-clock time without using

the work profiling.

• Real-OP corresponds to the online iterative compilation as it would be applied

in a real online scenario. For each optimisation, a random sample of inputs is

selected, and the program is executed only once with each input. When execut-

ing each input, it uses the optimal work instrumentation for profiling the work

metric. The average of the WP for the sample of inputs is then used for selecting

the best optimisation.

• Real-R5 is similar to the Real-OP. It also corresponds to the online iterative

compilation as it would be applied in a real online scenario. For each optimi-

sation, a random sample of inputs is selected, and the program is executed only

once with each input. When executing each input, it uses the relaxed work in-

strumentation, with a 5% threshold, for profiling the work metric. The average of

the WP for the sample of inputs is then used for selecting the best optimisation.

• Real-IPC corresponds to the online iterative compilation based on the IPC met-

ric. For each optimisation, a random sample of inputs is selected, and the pro-

gram is executed only once with each input. The average of the IPC metric for

the sample of inputs is then used for selecting the best optimisation.

The comparison between Oracle-RM and Oracle-PP is useful for validating the use of

the WP metric for guiding iterative compilation, while the other configurations demon-

strate the viability of applying the online iterative compilation in a real scenario.

Figure 6.14 shows the average input-window size for each benchmark and configu-

ration. It shows that we can have a statistically sound measurement of the performance

metric using just a small number of inputs.
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Figure 6.14: Average input-window sizes observed during the online iterative compila-

tion.

6.3.1 The Set of Optimisation Sequences

For the purpose of evaluating the use of the WP metric with iterative compilation, we

collected in advance a fixed set of optimisation sequences. The reason for using this

fixed set, as explained in Section 4.2, is because this thesis is focused on other compo-

nents of the infrastructure for performing iterative compilation and we assume that a

good generator of optimisation sequences will be used in a real online scenario. This

set contains 500 optimisation sequences collected in a random search using the training

benchmarks. These optimisation sequences contain an average of 40 individual opti-

misation passes, including repetitions, with a maximum of 119 optimisation passes,

but it also contains optimisation sequences which consist of a single flag, such as the

default optimisations -O1, -O2, -O3, -Os, and -Oz.

Example of a short optimisation sequence:
-mem2reg -simplifycfg -constprop -dce

Example of a long optimisation sequence:
-globalopt -reassociate -instcombine -loop-rotate -block-freq -deadargelim

-early-cse -sroa -argpromotion -sccp -tbaa -barrier -constmerge

-loop-vectorize -domtree -basicaa -memdep -basiccg -memcpyopt

-constprop -adce -globaldce -mem2reg -constmerge -globaldce -constprop

-instsimplify -dse -dce -simplifycfg -loop-unroll -reassociate -constprop

-globaldce -instsimplify -adce -constmerge -bb-vectorize -dce -mergefunc

-simplifycfg -dse -loop-unroll -globaldce
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Example of an optimisation sequence which includes -O3:
-O3 -adce -globaldce -simplifycfg -memcpyopt -reassociate -mergefunc

-dce -dse

Repeating the same optimisation pass can be beneficial and usually expected by

other passes. For example, the -loop-simplify pass is used for transforming loops into

a canonical form by inserting pre-header and exit basic blocks. Although this pass

inserts jumps due to redundant basic blocks, this canonical form can be favourable

to other loop optimisations. Because of the redundant basic blocks, this optimisation

pass expects that the -simplifycfg will eventually be executor later on the optimisation

pipeline. Another example of such inter-relation between transformations concerns the

-licm and -mem2reg passes. The -licm pass is responsible for moving invariant code

out from the loop body. It usually creates new local variables, using memory access

operations, for assisting with the code manipulation, which means that the executing

the -mem2reg pass afterwards would be useful as a cleanup pass for removing the extra

memory accesses generated. However, many of the analysis required for identifying

loop invariant also benefit from the transformations performed by the -mem2reg pass.

These examples illustrate the importance of repeating optimisation passes. Moreover,

they illustrate the intricate relation amongst several transformations.

However, all optimisation sequences in the set of optimisations were generated

completely at random, without using any knowledge of individual transformations.

Each optimisation sequence was generated in two steps: (1) randomly selects the num-

ber of flags; (2) randomly selects the flags, allowing repetitions. Afterwards, this ran-

domly generated optimisation sequence would be included in the set of optimisation

sequences only if it was able to improve the performance of a training benchmark,

also selected at random, in respect of the -O3 default optimisation. This process was

repeated until we obtained all the 500 distinct optimisation sequences.

6.3.2 Performance Evaluation

In order to evaluate the quality of the final optimisation sequences selected by the iter-

ative compilation search, we compare their speedup by measuring wall-clock time of

the benchmarks when compiled with the standard -O3 optimisation. For each bench-

mark, after selecting the final optimisation sequence, we compute the average speedup

over all the 1000 input dataset. When measuring the wall-clock time for each input, to
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reduce noise, we execute the same input until we have a statistically sound measure-

ment, i.e. we execute until we have an interval no larger than 1% with 99% confidence.

Figure 6.15 shows these average speedups over all the 1000 input dataset. This figure

shows that the best optimisation sequence selected with the Oracle-PP is very close to

the performance of the best optimisation sequence selected with the Oracle-RM. This

result is important for demonstrating that a work-based metric has the potential to pro-

duce good results in a real online scenario, where there is the restriction that programs

execute distinct inputs only once. Moreover, the evaluation also indicates that the use

of relaxation algorithms does not degrade the optimisation search, it might even benefit

the iterative compilation as it tends to insert smaller interferences in the performance

measurement. Finally, Figure 6.15 also presents the results of iterative compilation

guided by IPC, which is futher discussed in Figure 6.17.
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Figure 6.15: Speedups obtained from the final optimisation sequence selected by the

online iterative compilation. The speedups reported for each benchmark represents the

average speedup across their complete 1000 input datasets.

Figure 6.16 shows the histogram of the speedups obtained for each benchmark with

all their respective 1000 inputs. This figure shows the speedups of the best optimisation

sequence found by the oracle with real measurements of execution time (Oracle-RM).

Figure 6.16 is also important for showing that, although some of the benchmarks have

a very consistent speedup for all their inputs, other benchmarks are highly sensitive

to the input. For example, the optimisation sequence with best average performance

for the jpeg_c benchmark presents a wide range of speedups across all its inputs,

varying from about 1 up to about 1.6 of speedup. On the other hand, although the best

optimisation sequence selected for the adpcm_c benchmark has a much shorter range
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Figure 6.16: Histograms for the speedups over -O3 with the complete dataset of 1000

inputs for each benchmark. In each case, we are using the optimisation sequence with

the best average speedup over -O3. This figure shows how the performance for some

of the benchmarks are highly sensitive to the input.

of speedups, there is a clear concentration of inputs around different speedups. These

results corroborate the claim that performing iterative compilation on a single input
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Figure 6.17: Comparison between iterative compilation using IPC or the WP metric.

can be misleading and cause the optimisation search to overfit.

Finally, Figure 6.17 presents a comparison between IPC and the WP metric re-

garding their correlation with the actual speedup over -O0 observed during iterative

compilation. Each point in the figure corresponds to each metric averaged over input



6.4. Summary 65

windows collected during multiple executions of the iterative compilation. The verti-

cal lines correspond to the optimisation sequence selected by the iterative compilation

search, which either represents the highest IPC or the highest value of WP. In all cases,

the optimisation sequence selected based on the WP is much closer to the best speedup

than the optimisation sequence selected based on IPC, which can be attributed to the

fact that the WP has a stronger correlation with the speedup. In all cases, IPC shows

little to no correlation with the speedup, which corroborates the argument given in

Section 4.1.2.

For some cases, namely for the tiff-related benchmarks, the WP shows a worse

correlation with speedup. We believe these cases could be improved by improving

the cost model used to compute the work metric. However, even in these cases, the

optimisation sequences selected based on the WP outperform those selected based on

the IPC metric.

6.4 Summary

In this chapter, we have evaluated the work profiling and online iterative compilation

guided by the work-based performance metric. In particular, for the work profiling, we

compared the optimal work profiling with both relaxation algorithms proposed. We

showed that, although the optimal instrumentation has an average overhead of about

12% compared to the non-instrumented program, in some critical cases, the optimal

profiling can have very high overheads of about 70%. The proposed algorithms for

relaxation are able to trade-off between accuracy and overhead. The relaxed algorithm

applied per DAG, using a 5% error threshold, was able to reduce the average overhead

by about 43% over the optimal work profiling, while incurring in a dynamic measure-

ment error of much less than 1%. The whole program relaxation, which makes use of

profiling from previous execution, was able to reduce even further this overhead by a

factor of 2× compared to the optimal profiling.

Regarding the online iterative compilation, we showed that the work-based perfor-

mance metric enables iterative compilation even under the restriction that programs

must execute distinct inputs only once. The online iterative compilation, under real

conditions, was able to achieve good performance improvements when compared to

the oracles, with an average improvement of 5.4% and a maximum of about 20%.

Contrary to what previous work has suggested, we have also shown that instructions

per cycle (IPC) is not a good metric for guiding online iterative compilation.





Chapter 7

Conclusions

In this work, our main goal is to enable iterative compilation in online scenarios. We

define the online scenario as having the restriction that programs execute multiple in-

puts and distinct inputs are executed only once. To this end, we propose the use of a

work-based performance metric for guiding iterative compilation, where a work profil-

ing is used to measure the amount of work for each execution of the program. Because

having a low overhead instrumentation is essential in this online scenario, we propose

two relaxation algorithms which provide a trade-off between measurement accuracy

and overhead. The proposed whole program relaxation was able to achieve an average

overhead of about 5% over the non-instrumented program with the -O3 optimisation.

This overhead represents a 2.1× reduction over the optimal work profiling, while in-

curring in a dynamic measurement error of less than 3%.

Our results corroborate the use of the work-based performance metric for guiding

online iterative compilation. Under real conditions, it was able to achieve good perfor-

mance improvements when compared to the oracles, which were allowed to execute

the program with the same input multiple times, achieving an average improvement of

5.4% and a maximum of about 20%. Contrary to what previous work has suggested,

we have also shown that instructions per cycle (IPC) is not a good metric for guiding

online iterative compilation.

7.1 Future Work

As future work one could improve the work instrumentation by developing a context-

aware instrumentation to avoid updates to the global counter in function calls inside

tight loops. Function cloning could be employed to address this issue. Updates to the

67
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global counter could be avoided by exchanging the local counter with the specialised

version of cloned functions via argument and return values. This transformation cre-

ates opportunities for future optimisations, e.g., after applying function inlining, while

updates to global variables tend to prevent optimisations.

Regarding the relaxed instrumentation, one could merge probes in branching paths

for which the difference between the amount of work computed in each path stays

within a given threshold. In this case, the branch could be considered as a straight-

line code for which the amount of work is a weighted average, based on the branching

probability, of the work for each path. Another improvement to the relaxed instrumen-

tation would be to perform a loop-aware relaxation. In other words, loops for which

the trip count has a known upper bound could be considered as if it was unrolled when

performing relaxation on the outer scope. Hence the whole region could be perceived

as a single DAG.

For multi-threaded programs, one could analyse the trade-offs of performing a syn-

chronised update to the global work counter versus allowing race conditions. Although

this trade-off can produce non-deterministic errors in the measurement of the amount

of work, in most programs, this error might be non-relevant compared to the perfor-

mance benefit of avoiding synchronisation.

A mechanism similar to the one used for the online iterative compilation with the

work-based performance (WP) metric can also be applied to perform runtime auto-

tuning or multi-versioning optimisations. This mechanism would be particularly use-

ful for irregular programs. In the case of multi-versioning optimisations, one could

have multiple instrumented and non-instrumented versions of hop loops or functions.

Initially, the instrumented version would be executed to collect the WP metric and

then be able to select which optimised version to use in future executions, for which

the non-instrumented version would be used.

In the area of experimental algorithmics, work-based metrics are largely used in

order to empirically estimate the asymptotical complexity of programs. These esti-

mates usually comprise measuring the input size and the computational cost during

the execution of a program. To that end, the work instrumentation, with the proposed

relaxation algorithms, could be adapted to these other work-based metrics in order to

provide low-overhead algorithmic profiling.
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