
Reducing Code Size with Function Merging

Rodrigo Caeteano de Oliveira Rocha
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2021

Abstract
Resource-constrained devices for embedded systems are becoming increasingly

important. In such systems, primary and secondary memories are highly restrictive,

making code size in most cases even more important than performance. Compared to

more traditional platforms, memory is a larger part of the cost and code occupies much

of it. Despite that, compilers make little effort to reduce code size. One important

optimisation for code-size reduction is function merging. This technique eliminates

redundant code across functions by merging them into a single function.

However, production compilers only apply this optimisation to identical functions,

while research compilers improve on that by merging the few functions with identical

control-flow graphs and signatures. Overall, existing solutions are insufficient and we

end up having to either increase cost by adding more memory or remove functionality

from programs.

This thesis introduces the first techniques capable of merging arbitrary pairs of

functions. Our insight is that the weak results of prior function merging techniques are

due to their rigid and overly restrictive solutions instead of the lack of duplicate code

in the input program. Our solution corroborates this insight, resulting in drastic code

size reductions while also reducing end-to-end compilation time.

First, we introduce FMSA, a novel technique that can merge arbitrary functions

through sequence alignment, a bioinformatics algorithm for identifying regions of sim-

ilarity between sequences. We combine this technique with an intelligent exploration

mechanism to direct the search towards the most promising function pairs. Our evalu-

ation on the SPEC 2006 benchmark suite shows that FMSA is more than 2.4× better

than the previous state of the art, proposed by von Koch et al., reducing code size by

up to 25%, with an overall average of 6%. FMSA increases end-to-end compilation

time by an average of 15%.

While representing a leap forward, experiments show that FMSA fails to reduce

code size in some cases where it would be intuitively expected to work. This limitation

stems from its inability to directly handle phi-nodes. Instead, FMSA applies register

demotion to replace all such nodes with memory operations, in an attempt to simplify

the code generation process. We build on this technique and develop SalSSA that fully

supports the SSA form, removing any need for register demotion. By doing so, we

notably increase the number of profitably merged functions. Experimental results on

the SPEC 2006 and 2017 suites show that our approach delivers on average, 7.9%

to 9.7% reduction on the final size of the compiled code. Moreover, as a result of

iii

aligning shorter sequences of instructions and reducing the number of wasteful merge

operations, our new approach incurs an average compile-time overhead of only 5%,

while also reducing memory usage by over 2×.

Finally, we continue to build on SalSSA by developing HyFM, which delivers sim-

ilar levels of code size reduction for significantly lower compilation time and memory

usage. To this end, we introduce an alignment strategy that works at the basic block

level. Since basic blocks are usually much shorter than functions, even a quadratic

alignment is acceptable. However, we also propose a linear algorithm for aligning

blocks at a much lower cost. We extend this strategy with a multi-tier profitability

analysis that bails out early from unprofitable merging attempts. By aligning individ-

ual pairs of blocks, we are able to decide their alignment’s profitability before actually

generating code. Experimental results on SPEC 2006 and 2017 show that HyFM needs

orders of magnitude less memory, using up to 48 MB or 5.6 MB, depending on the

variant used, while SalSSA requires 32 GB in the worst case. HyFM also runs over

4.5× faster, while still achieving comparable code size reduction. Combined with the

speedup of later compilation stages due to the reduced number of functions, HyFM

contributes to a reduced end-to-end compilation time.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather.

“Function merging by sequence alignment.” In IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO), pp. 149-163. Best Paper

Award. 2019.

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather.

“Effective function merging in the SSA form.” In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pp. 854-868.

2020.

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazel-

wood, Hugh Leather. “HyFM: Function Merging for Free.” In the International

Conference on Languages Compilers, Tools and Theory of Embedded Systems

(LCTES). 2021.

(Rodrigo Caeteano de Oliveira Rocha)

v

Table of Contents

1 Introduction 1

1.1 The Importance of Code Size for Different Domains 2

1.2 Limitations of Existing Function Merging 3

1.3 Contributions . 5

1.3.1 Function Merging by Sequence Alignment 5

1.3.2 Effective Function Merging in the SSA Form 6

1.3.3 Function Merging for Free 6

1.4 Research Impact . 7

1.5 Structure . 8

2 Background 9

2.1 Compiler Infrastructure . 9

2.1.1 Link-Time Optimisations . 11

2.1.2 Target-Specific Cost Models 12

2.2 Sequence Alignment . 13

2.2.1 Needleman-Wunsch Algorithm 15

2.2.2 Other Sequence Alignment Algorithms 16

3 Related Work 19

3.1 Code-Size Optimisations . 19

3.1.1 Constant Folding . 19

3.1.2 Unreachable-Code Elimination 20

3.1.3 Dead-Code Elimination . 20

3.2 Merging Identical Functions . 21

3.2.1 Merging Identical Object Code During Link Time 22

3.2.2 Identical Function Merging 23

3.3 Merging Beyond Identical Functions 25

vii

3.4 Code Factoring . 28

3.5 Code Similarity . 29

3.6 Reducing Hardware Area via Datapath Merging 30

3.7 Summary . 30

4 Function Merging by Sequence Alignment 31
4.1 Motivation . 32

4.2 Our Approach . 33

4.2.1 Overview . 34

4.2.2 Linearisation . 36

4.2.3 Sequence Alignment . 36

4.2.4 Equivalence Evaluation . 37

4.2.5 Code Generation . 38

4.3 Focusing on Profitable Functions . 41

4.3.1 Profitability Cost Model . 44

4.3.2 Link-Time Optimisation . 45

4.4 Evaluation . 46

4.4.1 Experimental Setup . 46

4.4.2 Code-Size Reduction . 47

4.4.3 Compilation Overhead . 51

4.4.4 Performance Impact . 53

4.5 Conclusion . 53

5 Effective Function Merging in the SSA Form 55
5.1 Motivating Example . 56

5.2 The SalSSA Approach . 60

5.2.1 Control-Flow Graph Generation 61

5.2.2 Operand Assignment . 63

5.2.3 Preserving the Dominance Property 67

5.2.4 Phi-Node Coalescing . 68

5.3 Evaluation . 69

5.3.1 Experimental Setup . 70

5.3.2 Evaluation on SPEC CPU 70

5.3.3 Evaluation on MiBench . 72

5.3.4 Further Analysis . 75

5.3.5 Memory Usage . 75

viii

5.3.6 Compilation Time Overhead 77

5.3.7 Performance Overhead . 79

5.4 Conclusion . 79

6 Function Merging for Free 81
6.1 Background and Motivation . 82

6.1.1 Function Merging via Sequence Alignment 82

6.1.2 Limitations of SalSSA . 83

6.1.3 When Less is More . 85

6.2 Hybrid Function Merging . 86

6.2.1 Overview . 86

6.2.2 Pairing Similar Basic Blocks 87

6.2.3 Aligning Paired Basic Blocks 88

6.2.4 Multi-Tier Profitability Analysis 89

6.2.5 Independence from Code Layout 90

6.3 Evaluation . 91

6.3.1 Experimental Setup . 91

6.3.2 Code Size Reduction . 92

6.3.3 Speeding Up Function Merging 94

6.3.4 End-to-End Compilation Time 97

6.3.5 Code Size and Compilation Time Trade-Off 97

6.3.6 Memory Usage . 98

6.4 Conclusion . 100

7 Conclusion 103
7.1 Contributions . 103

7.1.1 Merging Arbitrary Pairs of Functions 103

7.1.2 Effective Code Generator for the SSA Form 104

7.1.3 Merging Functions One Block at a Time 105

7.2 Future Work . 106

7.2.1 Handling Code Reordering at the Instruction Level 106

7.2.2 Merging Across All Scopes 107

7.2.3 Multi-Function Merging . 107

7.2.4 Scaling for Large Programs 108

7.2.5 Powered by Deep Learning 108

7.2.6 Avoiding Performance Overheads 108

ix

7.2.7 Less Memory Usage by JIT 109

Bibliography 111

x

List of Figures

2.1 Overview of the three-phase compiler infrastructure. 10

2.2 Breakdown of the frontend, illustrating how compilers are organised

as a series of phases. 10

2.3 Sequence of representations used during the compilation pipeline in

modern compilers. 10

2.4 Overview of the default compilation pipeline. 11

2.5 Overview of the compilation pipeline using LTO. 12

2.6 Example of an optimum alignment between two sequences. Matching

segments are shown in green, vertically centred, and the non-matching

segments are shown in red at the sides. 13

2.7 Example of the similarity matrix computed for two input sequences.

The highlighted cells represent the resulting alignment computed by

the Needleman-Wunsch algorithm. 15

2.8 Set of rules used to compute the scores of the similarity matrix. The

two first rules represent the penalty of inserting a horizontal or verti-

cal gap. The diagonal rule depends whether we have a matching or

mismatching pair of input characters. 16

3.1 Example of identical functions. 21

3.2 Two functions extracted from the 447.dealII benchmark that are not

identical at the source level, but after applying template specialisation

and optimisations they become identical at the IR level. 22

3.3 Example of two pairs of highly similar functions. Because they are not

identical, they cannot be merged by the function merging technique

currently found in major compilers. 26

xi

3.4 An example of two functions with isomorphic CFGs and their corre-

sponding basic blocks arranged side by side. Instructions in paired

basic blocks are compared in a pairwise manner. 27

3.5 An example of a merged basic block containing two mismatching pairs

of instructions. A split is added for every pair of mismatching instruc-

tions with the phi-node instruction added to their immediate point of

convergence. 28

4.1 Example of two functions from the benchmark sphinx with different

parameters that could be merged, as shown at the bottom. We highlight

where they differ. 32

4.2 Example of two functions from the benchmark libquantum with dif-

ferent CFGs that could be merged, as shown at the bottom. We high-

light where they differ. 34

4.3 Overview of our function-merging technique. Equivalent segments of

code is represented in light green and the non-equivalent ones in dark

red. 35

4.4 Linearizing the CFG of an example function. 36

4.5 The sequence alignment between two functions. 37

4.6 Example of a merge operation on the parameter lists of two functions. 39

4.7 Overview of our exploration framework. 42

4.8 Average CDF for the position of the profitable candidate and the per-

centage of merged operations covered. 89% of the merge operations

happen with the topmost candidate. 43

4.9 In our experiments we use a compilation pipeline with a monolithic

link-time optimisation (LTO). 45

4.10 Object file size reduction for Intel (top) and ARM (bottom). We evalu-

ate our approach (FMSA) under four different exploration thresholds,

which control how many potential merging pairs we examine for each

function before making a decision. Even for a threshold of one, we

outperform the state-of-the-art by 2.4× (Intel) and 1.9× (ARM). . . . 47

4.11 Object file size reduction for Intel on the Mibench benchmark suite.

Our approach (FMSA) is the only one able to achieve a meaningful

reduction on these benchmarks. 51

xii

4.12 Compilation-time overhead on the Intel platform. For exhaustive ex-

ploration (not shown) the average overhead is 25×. Through ranking,

we reduce overhead by orders of magnitude. For an exploration thresh-

old of one, FMSA has an overhead of only 15%. 51

4.13 A compilation-time breakdown isolating the percentage for each major

step of the optimisation (t=1). 52

4.14 Runtime overhead on the Intel platform. Performance impact is almost

always statistically insignificant. For the few benchmarks affected,

FMSA merges hot functions. 52

5.1 Original input functions to be merged, before register demotion. These

simplified functions highlight a problem commonly seen in real pro-

grams. 57

5.2 Desired merged function that can be produced by an expert. An extra

argument called %fid is used to select between the two functions. This

represents a gain of about 20% in the total number of instructions. . . 58

5.3 Aligned example functions after register demotion. The functions dou-

ble in size after demotion, slowing down alignment. Merging some

of the generated stack accesses will prevent eliminating them later

through register promotion. 59

5.4 Average normalised function size, before and after register demotion,

across all functions in each program from the SPEC 2006 benchmark

suite. Register demotion increases function size by almost 75% on

average. 60

5.5 Example functions aligned without register demotion. Phi-nodes are

excluded from alignment. 61

5.6 Merged CFG produced by SalSSA. Code corresponding to a single

input basic block may be transformed into a chain of blocks, separating

matching and non-matching code. The generator inserts conditional

and unconditional branches to maintain the same order of instructions

from the input basic block. Operands and edges highlighted in blue

will be resolved by the operand assignment described in Section 5.2.2. 62

5.7 Operand selection for the call instruction in L4 from Figure 5.6. Mis-

matching operands chosen with a select instruction on the function

identifier. 64

xiii

5.8 Optimizing operand assignment for commutative instructions. Exam-

ple of a merged add instruction that can have its operands reordered to

allow merging the two uses of %m, avoiding a select instruction. 64

5.9 Label selection for mismatched terminator instruction operands Lf1

and Lf2 corresponding to labels of two different basic blocks. We han-

dle control flow in a new basic block, Lsel with a conditional branch

on the function identifier targeting the two labels. We use the label of

the new block as the merged terminator operand. 65

5.10 Optimizing label assignment for conditional branches. Example of a

merged br instruction that can have its label operands reordered, trad-

ing two label selections by one xor operation. 66

5.11 Landing blocks are added after operand assignment and are assigned

to invoke instructions as operands. 66

5.12 Example of how SalSSA uses the standard SSA construction algorithm

to guarantee the dominance property of the SSA form. 67

5.13 Phi-node coalescing reduces the number of phi-nodes and selections. . 68

5.14 Reducing the number of phi-nodes by coalescing disjoint definitions

with no user instructions in common. 69

5.15 Compilation pipeline used for the evaluation. Both SalSSA and FMSA

are applied in LTO mode. 70

5.16 Linked object size reduction over LLVM LTO when performing func-

tion merging with SalSSA or FMSA on SPEC CPU 2006 (a) and 2007

(b). Each approach was evaluated using three different exploration

thresholds. On SPEC CPU2006, SalSSA reduces code size by 9.3% to

9.7% on average, almost twice as much as FMSA. On SPEC CPU2017,

SalSSA reduces code size by 7.9% to 9.2% on average, more than

twice as much as FMSA. 71

5.17 The percentual reduction in size of the linked object files, targeting the

ARM architecture. We evaluate SalSSA or FMSA over the LLVM

LTO on the MiBench embedded benchmark suite. Each approach

was evaluated using three different exploration thresholds. SalSSA

achieves a geo-mean reduction of 1.4% to 1.6%, about twice as much

as FMSA. 74

xiv

5.18 A breakdown of SalSSA[t = 1] on the djpeg benchmark. The actual

contribution to the final code size for each merge operation deemed

profitable by the cost model. 74

5.19 Evaluation of the impact of phi-node coalescing on the size of the final

object file. SalSSA-NoPC, which includes phi-node coalescing, has

a measurable benefit over the alternative without phi-node coalescing

(SalSSA-NoPC). When enabled, phi-node coalescing achieves up to

7% of code size reduction on top of SalSSA-NoPC. 75

5.20 Total number of profitable merge attempts for SalSSA and FMSA on

19 SPEC CPU2006 benchmarks. For both cases, we used the low-

est exploration threshold (t=1). SalSSA achieves 31% more profitable

merge operations. 76

5.21 Peak memory usage during compilation time on the SPEC CPU2006

benchmark. On average, SalSSA requires less than half the memory

used by FMSA. 76

5.22 Speedup over the accumulated time spent on both sequence alignment

and code generation. SalSSA produces significantly less overhead than

the FMSA. 77

5.23 End-to-end compile-time for SalSSA and FMSA for three different

exploration thresholds and 19 different SPEC CPU2006 benchmark.

Compile-time is normalised to that of the baseline with no function

merging. SalSSA reduces the overhead of function merging by 3× to

3.7× on average. 78

5.24 Comparison between the runtime impact from FMSA and SalSSA.

Our approach increases the runtime overhead because it merges more

functions. For most benchmarks, the overhead is small. For the rest,

profiling-directed merging would eliminate the overhead. 78

6.1 Breakdown of the relative runtime for the different stages from SalSSA.

Alignment takes 25 seconds and 4.2 minutes on 638.imagick s and

602.gcc s, respectively. 84

xv

6.2 Example extracted from 483.xalancbmk in SPEC CPU2006. Instruc-

tions marked green have been aligned through sequence alignment

with an instruction from the other function. SalSSA would attempt

merging all matched instructions but only the ones in fully aligned ba-

sic blocks would be profitable. 85

6.3 Two examples of the pairwise alignment. Only instructions in corre-

sponding positions are aligned. Instructions match if they have the

same opcode. 89

6.4 Example with code reordering extracted from the 450.soplex program. 90

6.5 Linked object size reduction over LLVM LTO when performing func-

tion merging with HyFM or SalSSA on SPEC CPU 2006 and 2017.

On average, HyFM improves code size reduction. 93

6.6 Speedup of the function merging pass in isolation relative to SalSSA.

The multi-tier profitability analysis reduces the number of unprofitable

merge operations leading to a significant speedup. 95

6.7 Breakdown of the relative runtime for the different stages of the func-

tion merging pass. All measurements are normlised by SalSSA’s total

runtime on the corresponding benchmark. For every benchmark, we

show SalSSA, [PA,NMP], [PA], [NW,NMP], and [NW], in this order. 96

6.8 Normalised end-to-end compilation time for SPEC 2017 and SPEC

2006 relative to LLVM LTO. 98

6.9 Average reduction speed on both SPEC 2006 and 2017. 99

6.10 Peak memory usage of SalSSA and HyFM variants for SPEC 2006 and

2017 in log scale. SalSSA has a peak memory usage several orders of

magnitude hundreds higher than all other approaches. The pairwise

alignment variants of HyFM need on average only a seventh of the

memory needed by the Needleman-Wunsch variants. 101

7.1 Example of how even trivial reordering is poorly handled by the exist-

ing solutions. 107

xvi

List of Tables

4.1 Number and size of functions present in each SPEC CPU2006 bench-

mark just before function merging, as well as number of merge opera-

tions applied by each technique. 48

4.2 Number and size of functions present in each MiBench benchmark

just before function merging, as well as number of merge operations

applied by each technique. 50

5.1 Number and size of functions present in each MiBench benchmark

just before function merging, as well as number of merge operations

applied by each technique. 73

xvii

Chapter 1

Introduction

While often overlooked, program size can be a first-order constraint. From tiny embed-

ded devices up to cloud servers, these systems are all operating under limited address-

able memory, storage, or bandwidth. When the program becomes excessively large

relative to the given constraints, this has a detrimental effect on the system. More-

over, programs are likely to grow in size and complexity as they continuously gain

new features over time [11, 47]. In such scenarios, reducing the application footprint

is essential [6, 11, 39, 66, 67, 75].

Despite the importance of keeping code size small, compilers still make little effort

to reduce it, except for some classical optimisations, such as dead-code elimination.

Their efforts are usually limited to disabling performance optimisations that tend to

increase size, such as loop unrolling or inlining. Developers might have more luck just

removing functionality from their libraries [39] or hand-optimising their code [77].

However, these efforts are often undesirable if even possible at all. Therefore, we must

develop and tune compilation techniques primarily focused on reducing code size.

Code-size optimisations work by replacing a piece of code with another that is

semantically equivalent but uses fewer or smaller instructions, in the binary format,

sometimes combining and reusing equivalent pieces of code. Classical optimisations

that are effective in reducing code size include the elimination of redundant, unreach-

able, or dead code [8, 12, 18]. Although initially motivated by performance, these

classical optimisations achieve better performance by reducing the static number of in-

structions in the code, which translates to fewer dynamic instructions during runtime.

Recently, we have seen some progress with optimisations based on merging equiv-

alent code within or across functions [11, 23]. One important optimisation capable of

reducing code size is function merging. In its simplest form, function merging reduces

1

2 Chapter 1. Introduction

replicated code by combining multiple identical functions into a single one [2, 50].

This optimisation is found in linkers, by the name of identical code folding (ICF),

where text-identical functions at the bit level are merged [1, 44, 70].

It is obvious how function merging can reduce code size by removing function

duplicates. Nevertheless, it can also potentially reduce compilation time. For example,

when merging two identical functions, the remaining compilation pipeline will have

one fewer function to process and optimise. These benefits are not as obvious when

merging non-identical functions as it introduces extra code, adding complexity to the

merged function. In this thesis, even though our main goal is reducing code size, we

will explore both dimensions: code size and compilation time.

1.1 The Importance of Code Size for Different Domains

In this section, we discuss in detail the importance of code size for different domains.

The embedded system market is rapidly growing. Embedded systems need to per-

form increasingly complex tasks, with their application binaries often reaching several

megabytes in size, while running on inexpensive and resource-constrained devices.

As a result, permanent storage and memory size becomes a limiting factor [59]. Just

adding more memory is not always a viable option. Highly integrated systems-on-chip

are common in this market and their memories typically occupy the largest fraction of

the chip area, contributing to most of the overall cost. Even small increases in memory

area translate directly to increases in cost, which lead to enormous levels of lost profit

at large scales [22]. In addition to cost, embedded systems are also often limited by

other factors such as weight, area, and energy consumption [24, 71]. All these factors

limit the size of the storage and the memory available in embedded systems.

Modern mobile applications tend to have large binaries that need to support as

many devices as possible, including low-end devices with limited resources [25, 32].

Furthermore, Apple’s App Store imposes a limit when downloading an application

over the mobile broadband. Applications larger than this limit must be downloaded

only over the Wi-Fi. These restrictions on the size of the application may significantly

impact revenues for critical businesses. Chabbi et al. [11] have shown that certain large

applications may have over 90% of its total size being taken by their binary code, where

the remaining size is due to media and other resources. For these applications, reducing

the application’s binary size becomes of utmost importance for their businesses.

Beyond just mobile and embedded systems, powerful machines can also be unable

1.2. Limitations of Existing Function Merging 3

to properly handle extremely large programs. For example, compilation and load time

can become impractical for extremely large programs and codebases [29, 37]. More-

over, address space also limits how large programs can become. Upgrading computers

at scale is a challenging and costly process even for large datacenters [56, 78]. As

a result, outdated 32-bit machines have an addressable memory space limited to less

than 4 GB, setting a limit on program size. This limitation is even worse on machines

with shorter word widths. In such constrained scenarios, reducing the application’s

footprint is essential [6, 39, 66, 67, 75].

1.2 Limitations of Existing Function Merging

Google developed an optimisation for the gold linker that merges functions that are

identical at the bit-level [44, 70]. Similar machine-level implementations are also of-

fered by other production compilers and linkers, such as MSVC [1] and LLVM’s lld

linker. However, such solutions are platform-specific and need to be adapted for each

object code format and hardware architecture. Alternatively, compilers also provide

a similar optimisation for merging identical functions at their mid-level intermediate

representation (IR) which is therefore agnostic to the target hardware [2, 50]. Un-

fortunately, these optimisations can only merge fully identical functions with at most

type mismatches that can be losslessly cast to the same format. These techniques can

leverage their simplicity to efficiently identify groups of mergeable functions. First

they compute the hash of all functions, then a tree structure is used to group equivalent

functions based on their hash values.

More advanced approaches can identify similar, but not necessarily identical, func-

tions and replace them with a single function that combines the functionality of the

original functions while eliminating redundant code. At a high level, the way this

works is that code specific to only one input function is added to the merged function

but made conditional to a function identifier, while code found in both input functions

is added only once and executed regardless of the function identifier. The function-

merging technique presented by von Koch et al. [23] exploits a concept of structural

similarity among functions. Two functions are structurally similar if both their function

types are equivalent and their control-flow graphs (CFGs) are isomorphic. Two func-

tion types are equivalent if they agree in the number, order, and types of their parame-

ters as well as their return types, linkage type, and other compiler-specific properties.

In addition to the structural similarity of the functions, their technique also requires

4 Chapter 1. Introduction

that corresponding basic blocks have exactly the same number of instructions and that

corresponding instructions must have equivalent resulting types. Mergeable functions

are only allowed to differ in corresponding instructions, where they can differ in their

opcodes or input operands.

Unfortunately, existing approaches fail to produce any noticeable code size reduc-

tion. These techniques only work on either identical or mostly identical functions,

limiting their potential to reduce code size. Our insight is that the weak results of ex-

isting function merging implementations are not due to the lack of duplicate code but

due to the overly restrictive algorithms they use to find duplicates.

In this work, we introduce a novel way to merge functions that overcomes major

limitations of existing techniques. Our approach is based upon the concept of sequence

alignment, developed in bioinformatics for identifying functional or evolutionary re-

lationships between different DNA or RNA sequences. Similarly, we use sequence

alignment to find areas of functional similarity in arbitrary function pairs. Aligned

segments with equivalent code are merged. The remaining segments where the two

functions differ are added to the new function with their code guarded by a function

identifier. This approach leads to significant code size reduction.

Because our novel technique is capable of merging any two functions, we also

propose a profitability analysis that identifies merging opportunities for code size re-

duction. However, attempting to merge all pairs of functions is prohibitively expensive

even for medium sized programs, considering the quadratic nature of sequence align-

ment. To counter this, our technique is integrated with a ranking-based exploration

mechanism that efficiently focuses the search to the most promising pairs of functions.

As a result, we achieve our code size savings while introducing little compilation-time

overhead.

Compared to identical function merging, we introduce extra code to be executed,

namely the code that chooses between dissimilar sequences in merged functions. A

naive implementation could easily hurt performance, e.g by merging two hot functions

with only a few similarities. We show that it is also possible to avoid performance

degradation by incorporating profiling information in the decision-making, enabling

the compiler to avoid merging functions that contain hot code.

1.3. Contributions 5

1.3 Contributions

In this section, we provide an overview of the main contributions presented in this

thesis. We provide the first techniques capable of merging arbitrary pairs of func-

tions. Then, we build on this technique to achieve an even greater code size reduction

while also reducing its compilation-time overheads. Our final contribution is a func-

tion merging technique that can effectively reduce code size as well as end-to-end

compilation time.

1.3.1 Function Merging by Sequence Alignment

As the first contribution of this thesis, we introduce a novel way to merge functions that

lifts most of the restrictions imposed by prior techniques. Our technique is the first that

allows merging arbitrary functions, including functions with different signatures and

control flow graphs. The proposed optimisation uses sequence alignment to identify

code similarity and guide the merging operation. It also merges parameters based on

their usage, minimising the number of parameters and operand selection, and handles

different return types using a union-like approach. The goal is to maximise the amount

of merged code while minimising the overhead required to handle the differences.

For functions with little to no similarity, merging them might increase code size.

However, because our technique is able to merge any pair of functions, it is necessary

to identify which pairs of functions are the most profitable to merge. To this end,

we introduce a novel ranking mechanism for focusing our optimisation on function

pairs that are more likely to be profitably merged. The proposed mechanism first pre-

computes fingerprints summarising each function and later uses them to rank function

candidates based on the fingerprint similarity. For each function, merging will be only

attempted for the top ranked candidates, significantly reducing compilation overhead

while still resulting in a meaningful code size reduction.

These contributions have been previously described in the following publication:

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather.

“Function merging by sequence alignment.” In IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO), pp. 149-163. 2019.

6 Chapter 1. Introduction

1.3.2 Effective Function Merging in the SSA Form

Although our technique, introduced in Chapter 4, achieves impressive results, it does

not directly handle phi-nodes which are fundamental to the SSA form. Instead, it

applies register demotion to replace all such nodes with memory operations, in an

attempt to simplify the code generation process. As we show in Chapter 5, after register

demotion, functions tend to be almost twice as long due to an excessive number of

memory operations. Therefore, such a strategy comes at the cost of poor merge results,

larger memory footprint, and longer compilation time.

Chapter 5 presents our improved technique that avoids this pitfall with a new code

generator capable of handling phi-nodes properly and completely bypassing register

demotion. This approach results in better merged functions by not relying on later

reversing the effects of register demotion. Merging smaller functions also significantly

reduces compilation overhead, due to the quadratic nature of sequence alignment.

The code generator also includes a novel phi-node coalescing optimisation tailored

for function merging, reducing the total number of phi-nodes and easing the pressure

on registers. Phi-node coalescing is able to reduce the number of phi-nodes and selec-

tions, producing smaller merged functions and reducing code size even further.

These contributions have been previously described in the following publication:

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh Leather.

“Effective function merging in the SSA form.” In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pp. 854-868.

2020.

1.3.3 Function Merging for Free

Our solution presented in Chapter 5, SalSSA, achieves on average a 10% code size

reduction but at the cost of crippling compile-time inefficiencies, especially for large

programs. In Chapter 6, we show that SalSSA can lead to 40% slower compilation,

taking up to 32 GB of peak memory usage even for modestly-sized programs. Such

a resource requirement is beyond what is typically available to a developer and thus

unsuitable for optimising real-life programs. These inefficiencies stem directly from

its quadratic sequence alignment used to identify mergeable instructions in a pair of

input functions.

In order to address these inefficiencies, we propose a new sequence alignment strat-

egy that works on the basic block level. Because basic blocks tend to be much smaller

1.4. Research Impact 7

than whole functions, this strategy greatly reduces the impact of the quadratic sequence

alignment algorithm. For even greater speedups, we propose a linear pairwise align-

ment that works on pairs of basic blocks of the same size. This technique is often

enough to achieve good code size reduction, because profitably merged functions tend

to have highly similar basic blocks.

We also propose a multi-tier profitability analysis. This include a fine-grain analy-

sis that estimates the profitability of the aligned basic blocks before actually generating

their merged code, allowing the compiler to bail out early from unprofitable merging

attempts, speeding up the optimisation process. This fine-grain analysis on the aligned

blocks result in improved code size reduction.

We show that this technique is capable of reducing end-to-end compilation time.

This result can be achieved for two main reasons: 1) By merging functions and remov-

ing code duplicates, it reduces the overall amount of code that needs to be optimised

and processed by the remaining compilation pipeline. 2) The compilation overhead re-

quired for merging functions is smaller than its benefits, resulting in a overall reduction

on the end-to-end compilation time.

These contributions have been previously described in the following publication:

• Rodrigo Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, Kim Hazel-

wood, Hugh Leather. “HyFM: Function Merging for Free.” In the International

Conference on Languages Compilers, Tools and Theory of Embedded Systems

(LCTES). 2021.

1.4 Research Impact

In this section, we discuss some of the research impacts resulting from the three pub-

lished papers previously presented.

Our papers have motivated other research projects on code size reduction. Pacheco

et al. [58] proposes the use of function inlining specifically for code size reduction.

Even though inlining tends to increase code size by replicating code, there are several

cases where inlining enable other optimizations that overall result in smaller binaries.

Chabbi et al. [11] presents a study on the use of function outlining for code size re-

duction where code replicas are extracted into a separate function to avoid repetition.

We have been working on a loop rolling strategy which identifies code replicas inside

a basic block merging those replicas into a loop. While function merging works on the

8 Chapter 1. Introduction

function level, outlining is a code merging strategy focused on the basic block level

and loop rolling is focused on the instruction level. All these strategies are orthogonal

and could be used in a complementary way.

There are ongoing work for further improvements on the function merging tech-

niques proposed in this thesis. Our FMSA implementation has also been part of a

technology transfer project with an industry partner. Finally, all our function merging

strategies have been implemented in LLVM and are available online.

1.5 Structure

This thesis is organised as follows:

Chapter 2 provides the main background. It provides an overview of compiler ar-

chitecture and compiler optimisations for code size reduction. It also provides

terminology and describes the sequence alignment algorithm from bioinformat-

ics.Compulsory

Chapter 3 surveys the relevant literature. First we describe the classic compiler op-

timisations that work by reducing code size. Then, we describe in detail the

existing techniques for function merging. Finally, we discuss other techniques

related to identifying code similarity.

Chapter 4 describes our novel function merging technique based on sequence align-

ment. It also presents its accompanying search strategy, where a fingerprint-

based ranking mechanism is used to focus the optimisation on functions with

more similarities.

Chapter 5 describes our new code generator for function merging that is capable of

effectively handling functions in the SSA form.

Chapter 6 describes our new alignment strategies that work on the basic block level,

reducing compilation time overheads. This enables a fine-grain multi-tier prof-

itability analysis capable of bailing out early from unprofitable merging attempts.

Chapter 7 summarises the overall findings of the thesis and outlines potential avenues

for future research.

Chapter 2

Background

In this chapter, we present fundamental concepts that are needed throughout this thesis.

Section 2.1 provides an overview of the architecture of modern compilers where we

also detail the different stages in the compilation process. Section 2.2 defines the

sequence alignment problem and the classic algorithm for computing the pair-wise

alignment.

2.1 Compiler Infrastructure

Compilers are programming tools responsible for translating programs in a given source

language to a lower-level target language. This compilation process must preserve the

program semantics. Moreover, compilers are also expected to produce a good quality

representation of the program in the target language, optimising for a given objective

function. An important objective function is code size, i.e., the optimisation goal is to

produce a representation of the program as small as possible.

Compilers are usually described as a three-phase architecture, as shown in Fig-

ure 2.1, which include a frontend, an optimiser, and a backend. The frontend is re-

sponsible for parsing, validating and diagnosing errors in the source code. This parsed

source code is then translated into an intermediate representation, namely, the LLVM

IR [45]. The optimiser is responsible for doing a broad variety of transformations, that

are usually independent of language and target machine, to improve the code’s perfor-

mance. The backend, also known as the code generator, then translates the code from

the intermediate representation onto the target instruction set. It is common for the

backend to also perform some low-level optimisations that take advantage of unusual

features of the supported architecture.

9

10 Chapter 2. Background

Source
Code

Frontend
IR

Optimiser Backend
Target
Code

IR

Figure 2.1: Overview of the three-phase compiler infrastructure.

However, these three-phases represent only a simplified view of their designed. In

order to manage the complexity involved in optimising compilers, modern compilers

are actually designed in a highly modular manner, where they are organised as a series

of phases that sequentially analyse and transform the program being compiled. For

example, the frontend alone is subdivided into multiple phases, as shown in Figure 2.2.

The lexer is responsible for tokenising the input stream of characters from the source

code. This token stream is then consumed by the parser, producing a language-specific

Abstract Syntax Tree (AST). The AST is an intermediate representation used during the

semantic analysis, before being lowered to another intermediate representation.

Parser AST Semantic
Analyser

Code
Generator

IR
Source
Code

Lexer AST

Frontend
Frontend Backend

Figure 2.2: Breakdown of the frontend, illustrating how compilers are organised as a

series of phases.

AST
Source
Language

HIR MIR LIR
Target
Assembly

(a) An overview of representations and their level of abstractions used during the compilation

pipeline.

LLVM IR Machine IR x86
Rust ASTRust MIR

Swift ASTSwift SIL

Julia ASTJulia Julia IR

Clang ASTC/C++

(b) An example of the sequence of representations used in real compilers for different program-

ming languages.

Figure 2.3: Sequence of representations used during the compilation pipeline in mod-

ern compilers.

Moreover, several intermediate representations, with different levels of abstraction,

are used throughout the compilation process from the source to the target language.

2.1. Compiler Infrastructure 11

Figure 2.3a illustrates the sequence of representations used by modern compilers, each

one having a progressively lower level than the previous one [46]. The source lan-

guage is parsed into an AST, which is then commonly lowered to another high-level

intermediate representation (HIR). As shown in Figure 2.3b, this HIR is usually a

language-specific IR, such as the Swift Intermediate Language (SIL), which is used

to solve domain-specific problems. A popular mid-level intermediate representation

(MIR) is the LLVM IR, which is shared among many compilers. In the LLVM com-

piler infrastructure, the LLVM IR is later lowered into a low-level representation (LIR),

called the Machine IR, which is finally lowered into the target assembly language. The

machine-code generation alone might actually involve multiple other intermediate rep-

resentations depending on the backend being used.

Different analyses and optimisations are better modelled at different abstraction

levels. However, most analyses and optimisations are language- and target-independent

and therefore are applied on the mid-level IR, maximising their reuse. An optimisation

developed for the mid-level IR can be used with any supported programming language

or target assembly.

2.1.1 Link-Time Optimisations

Compilers normally operate on a single translation unit at a time, where a translation

unit in C or C++ represents a single source file and its expanded headers. Each transla-

tion unit is optimised separately and compiled into a single native object file. Finally,

the linker combines multiple object files into a resulting binary or library. Figure 2.4

illustrates the standard pipeline for the compilation of multiple source files.

ELF
Linker ELF

Backend
IR

Frontend
IR Optimiser

Backend
IR

Frontend
IR Optimiser

Backend
IR

Frontend
IR OptimiserC/C++

C/C++

C/C++

Figure 2.4: Overview of the default compilation pipeline.

However, this approach limits the impact of inter-procedural optimisations (IPO) to

within each individual translation unit. For example, inlining can only occur between

two functions in the same translation unit. In order to fully benefit from IPO, these

optimisations should operate on the whole programs, instead of a single translation

12 Chapter 2. Background

unit. When the optimising across all translation units being linked into an executable,

the compiler can perform more aggressive optimisations that rely on whole-program

information [38].

Linker

Frontend
IR Optimiser

IR IR Optimiser Backend
IR

ELF
Frontend

IR Optimiser

Frontend
IR OptimiserC/C++

C/C++

C/C++

Figure 2.5: Overview of the compilation pipeline using LTO.

Figure 2.5 illustrates a common mechanism for enabling whole-program optimisa-

tion called link-time optimisation (LTO). In this approach, optimisations are applied

in two different moments. First, we have early optimisations being applied on a per

translation unit basis. However, we also have late optimisations being applied after all

translation units are linked together, allowing important inter-procedural optimisations

to be applied on the whole-program.

In the LTO mode, compilers usually delay the generation of native object files until

after the late optimisations. As shown in Figure 2.5, all translation units are linked

while still in an IR better suited for optimisation.

2.1.2 Target-Specific Cost Models

Compilers have cost models to compare two pieces of code in order to decide whether

or not a given code transformation is profitable. Therefore, these cost models play an

essential role in the decision making of most compiler optimisations [60, 74].

These cost models provide target-dependent cost estimations, with respect to a

given metric, approximating the cost of an IR instruction when lowered to machine in-

structions. Compilers usually provide multiple cost models, including: a performance

cost model that estimates the latency of each instruction; a code-size cost model that

estimates the binary size of each instruction. However, these cost models need not

predict precisely the latency or binary size of each instruction, because, ultimately,

these costs are used only for comparing two pieces of code in order to guide optimisa-

tions. Therefore, the cost estimated for one instruction is only relevant relative to other

instructions.

2.2. Sequence Alignment 13

2.2 Sequence Alignment

The comparison of two or more sequences, measuring the extent to which they differ, is

important in many scientific areas, most notably in molecular biology [10, 57, 68, 76]

where it has been critical in the understanding of functional, structural, or evolutionary

relationships between the sequences [43, 54].

A particularly important comparison technique is sequence alignment, which iden-

tifies a series of patterns that appear in the same order in the sequences. Essentially,

sequence alignment algorithms insert blank characters in both input sequences so that

the final sequences end up having the same size, where equivalent segments are aligned

with their matching segments from the other sequence and non-equivalent segments are

either paired with the blank or a mismatching character.

Figure 2.6 shows an example of a pair-wise sequence alignment. This example,

adapted from Lee et al. [48], shows two protein sequences where amino acids are

represented by their one-letter symbology [3].

Figure 2.6: Example of an optimum alignment between two sequences. Matching

segments are shown in green, vertically centred, and the non-matching segments are

shown in red at the sides.

Formally, sequence alignment can be defined as follows: For a given alphabet α,

a sequence S of k characters is an element of αk, i.e., S = (a1, . . .ak). Let S1, . . . ,Sm

be a set of sequences, possibly of different lengths but all derived from the same al-

phabet α, where Si = (a(i)1 , . . . ,a(i)ki
), for all i ∈ {1, . . . ,m}. Consider an extended al-

phabet that includes the blank character “−”, i.e., β = α∪ {−}. An alignment of

the m sequences, S1, . . . ,Sm, is another set of sequences, S̄1, . . . , S̄m, such that each

sequence S̄i is obtained from Si by inserting blanks in positions where some of the

other sequences have non-blank and possibly equivalent characters, for a given equiv-

alence relation. All sequences S̄i in the alignment set have the same length l, where

max{k1, . . . ,km} ≤ l ≤ k1 + · · ·+ km. Moreover, ∀i ∈ {1, . . . ,m}, S̄i = (b(i)1 , . . . ,b(i)l),

there are increasing functions vi : {1, . . . ,ki}→ {1, . . . , l}, such that:

• b(i)vi(j) = a(i)j , for every j ∈ {1, . . . ,ki};

14 Chapter 2. Background

• any position not covered by the function vi contain a black character, i.e., for

every j ∈ {1, . . . , l}\ Imvi, b j is the blank character “−”.

Finally, for all j ∈ {1, . . . , l}, there is at least one value of i for which b(i)j is not a

blank character. Note that two aligned sequences may contain both non-blank and

non-equivalent characters at any given position, in which case there is a mismatch.

The sequence alignment problem is concerned with identifying an alignment that

maximises the score for a given scoring scheme. The scoring scheme first defines a

weight for the alignment of pairs of characters which will then be used to compose

a score for the whole sequence alignment. These weights are used to penalise mis-

matches and gaps while favouring matching pairs.

The alignment score between two characters is defined by a function on pairs of

characters, δ ∈ β×β→R, for a given extended alphabet β. The simplest function that

is commonly used is the constant function [31]. Let a,b ∈ β and a 6= b. This constant

function is defined by a triple (w1,w2,w3) ∈ R+×R−×R−, such that:

• For two matching characters, δ(a,a) = w1,w1 ∈ R+.

• For a mismatch between non-blank characters, δ(a,b) = w2,w2 ∈ R−.

• The gap penalty, for when we have a blank character, δ(a,−)= δ(−,a)=w3,w3 ∈
R−.

This is a simple scoring scheme that rewards matches and penalises mismatches and

gaps.

There is a vast literature on algorithms for performing sequence alignment, espe-

cially in the context of molecular biology. These algorithms are classified as either

global or local. A global sequence alignment algorithm attempts to align the entire se-

quence, using as many characters as possible, up to both ends of each sequence. Global

alignment algorithms are useful for sequences that are highly similar and have approx-

imately the same length [54]. Alternatively, a local sequence alignment algorithm

generates subalignments in stretches of sequence with the highest density of matches.

Local alignments are more suitable for aligning sequences with very few similarities

or vastly different lengths [54].

In this work, we will focus on pair-wise global alignment algorithms. The fol-

lowing sections describe the main optimal algorithms based on dynamic program-

ming. These algorithms will offer different optimality, performance, and memory

usage trade-offs [10, 33, 57, 68].

2.2. Sequence Alignment 15

2.2.1 Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm [57] is a well-known algorithm for pair-wise global

alignment. This algorithm gives an alignment that is guaranteed to be optimal for a

given scoring scheme [34].

The Needleman-Wunsch algorithm is based on dynamic programming and consists

of two main steps. First, it builds a similarity matrix, based on a scoring scheme, which

assigns weights for matches, mismatches, and gaps (blank characters). Afterwards, a

backward traversal is performed on the similarity matrix, in order to reconstruct the

final alignment by maximizing the total score.

-130 -12-11-10-9-8-7-6-5-4-3-2-1

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1 -1 -10-9-8-7-6-5-4-3-2 -11 -10 -11

-10-9-8-7-6-5-4-3 -11 -11 -11-2-2

-8-7-7-6-5-4-3-2 -9 -10 -11-1-3

-10-9-7-6-5-4-3-2-10 -8-2-4

-10-9-7-6-5-4-3-2-1-1 -8-3-5

-8-7-5-4-3-2-10-2-2 -6-4-6

-6-5-3-2-101-1-3-3 -4-5-7

-4-3-1-2-100-2-4-4 -2-6-8

-2-1-2-2-1-1-1-3-5-5 0-7-9

01-3-2-2-2-2-4-6-6 -1-8-10

00-3-3-3-3-3-5-5-7 -2-9-11

-1-1-4-4-4-4-4-6-6-8 -3-10-12

Figure 2.7: Example of the similarity matrix computed for two input sequences.

The highlighted cells represent the resulting alignment computed by the Needleman-

Wunsch algorithm.

Figure 2.7 shows the similarity matrix corresponding to the example from Fig-

ure 2.6. The similarity matrix is constructed by comparing all possible pairs of char-

acters from the input sequences. Let S1 and S2 be our input sequences of sizes k1 and

k2, respectively, where S1 = (a1, . . . ,ak1) and S2 = (b1, . . . ,bk2). The similarity matrix

M computed for these two input sequences will have size (k1 +1)× (k2 +1). Let Mi, j

denote all entries in the similarity matrix, with 1 ≤ i ≤ (k1 +1) and 1 ≤ j ≤ (k2 +1).

16 Chapter 2. Background

The first entry in the matrix is M1,1 = 0, and

Mi, j = max

Mi−1, j +δ(ai−1,−) if i > 1 and j ≥ 1

Mi, j−1 +δ(−,b j−1) if i≥ 1 and j > 1

Mi−1, j−1 +δ(ai−1,b j−1) if i > 1 and j > 1

In other words, the score for each cell in the similarity matrix is the maximum among

the rules shown in Figure 2.8.

svsd

?

?

? P

sh sh+δ(-,P)

Gap

svsd

K

?

? ?

sh sh+δ(K,-)

Gap Mismatch

svsd

K

?

? P

sh sh+δ(K,P)

Match

svsd

K

?

? K

sh sh+δ(K,K)

DiagonalVerticalHorizontal

Figure 2.8: Set of rules used to compute the scores of the similarity matrix. The two

first rules represent the penalty of inserting a horizontal or vertical gap. The diagonal

rule depends whether we have a matching or mismatching pair of input characters.

Figure 2.7 also highlights the traversal. Note that sometimes, while traversing the

score matrix, there are multiple adjacent neighbours with the same score. Since there

may exist multiple traversals with the same score, two sequences can have multiple

optimum alignments.

The Needleman-Wunsch algorithm is quadratic in the size of the sequences being

aligned, both in time and space.

2.2.2 Other Sequence Alignment Algorithms

Although we focus on the well-known Needleman-Wunsch algorithm, there has been

several other sequence alignment algorithms. The Hirschberg algorithm [35] is a se-

quence alignment algorithm that offers a trade-off between runtime and space. It

uses re-computation to achieve a linear space complexity while still maintaining its

quadratic runtime.

There are also several local sequence alignment algorithms, which unlike the other

global ones that are focus on aligning the whole sequence, the local algorithms focus

on regions with the highest similarity. Among these local algorithms we have the well-

known Smith-Waterman [68] which is also quadratic in both time and space. Gotoh’s

algorithm [27] is a variant of the Smith-Waterman algorithm that acts as an optimal

2.2. Sequence Alignment 17

global alignment of two sequences when using an affine gap scoring. The affine gap

scoring uses different penalty for the first and subsequent gaps [31].

Several heuristic-based algorithms have also been proposed [31]. FAST [49] and

BLAST [5] are two heuristics that use look-up tables and seed segments. Once fixed-

size seed segments from one of the sequences have been indexed in the look-up ta-

ble, one can linearly search for these segments in the other sequences. Meanwhile,

MASAA [30] and MUMmer [19] are two different heuristics that use of suffix-trees.

The important applications of suffix trees are on solving the problems of longest com-

mon substrings and the maximal repeating string in the sequences [31]. Although these

heuristics offer significant benefits in terms memory usage and runtime performance,

their results tend to be sub-optimal. In future work, one could investigate the impact of

these different algorithms on the function merging techniques proposed in this thesis.

Chapter 3

Related Work

This chapter surveys the literature in areas relevant to this thesis. Section 3.1 pro-

vides an overview of classical optimisations for reducing code size. Sections 3.2 and

3.3 present the existing approaches for merging identical and non-identical functions,

respectively. Section 3.4 provides an overview of code factoring techniques.

3.1 Code-Size Optimisations

Although initially motivated by performance, many of the classical optimisations achieve

better performance by reducing code size. A small code, besides having fewer instruc-

tions to execute, can also have a positive impact on the cache utilisation. Classical opti-

misations that are effective in reducing code size include the elimination of redundant,

unreachable, and dead code, as well as certain kinds of strength reduction [8, 12, 18].

In this section, we will describe some of these classical size-reducing optimisations.

3.1.1 Constant Folding

Constant folding is an optimisation that operates on the instruction level, identifying

instructions whose operands are constant values, performing the evaluation of the in-

struction at compile time, and replacing it by the resulting value. The effectiveness of

constant folding can be augmented by combining it with constant propagation. Con-

stant folding reduces code size by eliminating instructions that can be computed at

compile time. Moreover, constant folding also works as an enabler to other optimisa-

tions, such as unreachable-code elimination (Section 3.1.2).

19

20 Chapter 3. Related Work

3.1.2 Unreachable-Code Elimination

Some functions may contain code that is unreachable. A piece of code is unreachable

if there is no valid control-flow path from the function’s entry point that leads to it.

Since unreachable code is guaranteed to never be executed, compilers should remove

it to avoid code bloat.

Often, unreachable code is uncovered by other optimisations. For example, after

constant propagation and constant folding, a conditional branch could have its condi-

tion evaluating to a constant, eliminating a path to one of its successor basic blocks. If

no other path leads to that basic block, it becomes unreachable.

The algorithm to eliminate unreachable code works in a mark-sweep manner, per-

forming two passes over the basic blocks of the CFG. The reachability analysis opti-

mistically assumes that all basic blocks are dead until proven otherwise. First, it marks

all blocks as unreachable. Next, starting from the entry point, it marks each block

that it can reach as reachable. If all branches and jumps are unambiguous, then all

unmarked blocks can be deleted. With ambiguous branches or jumps, the compiler

must preserve any block that the branch or jump can reach. This analysis is simple and

inexpensive.

3.1.3 Dead-Code Elimination

A value definition is dead if it is not used on any path from the point in which it

is defined to the exit point of the function. In a similar way, an instruction is dead

if it computes only values that are not used on any execution path leading from the

instruction. Any dead definition or instruction can be simply removed without altering

the program’s semantics, therefore reducing code size [55].

The algorithm to eliminate dead code has some similarities with that for unreachable-

code elimination described in Section 3.1.2. This algorithm also works in a mark-

sweep manner [73]. First, the algorithm marks critical instructions as alive. An in-

struction is critical if it has an observable effect, for example, if it is a return instruc-

tion, a branch instruction, a function call, a memory operation, any instruction with

side effect, etc. Then, the algorithm follows the use-def chain of every alive instruc-

tion, marking the operand instructions as alive. This process continues until no more

instructions can be marked as alive. Finally, the sweep phase removes all instructions

that have not been marked as alive, reducing code size.

3.2. Merging Identical Functions 21

3.2 Merging Identical Functions

In this section, we will discuss existing optimisations for merging identical functions.

Figure 3.1 illustrates how identical functions can appear in real programs. The first pair

of functions, shown in Figure 3.1a, were extracted from the 482.sphinx3 benchmark.

The only difference between these two functions is in their parameter type. However,

all pointer types can be considered equivalent since they can be bitcast in a lossless

way. These functions are usually produced by copy-and-paste programming, where

a given code pattern is copied and then repurposed [4, 36, 40]. The second pair of

functions, shown in Figure 3.1b, were extracted from the 403.gcc benchmark and they

are fully identical. These functions are part of GCC’s backend, where it is common to

have code that is automatically generated from a machine description [26, 42, 55].

void delete_contexts_MotionInfo
 (MotionInfoContexts *enco_ctx)

{
 if(enco_ctx == NULL)
 return;

 free(enco_ctx);

 return;
}

void delete_contexts_TextureInfo
 (TextureInfoContexts *enco_ctx)
{
 if(enco_ctx == NULL)
 return;

 free(enco_ctx);

 return;
}

(a) Two semantically identical functions extracted from the 482.sphinx3 benchmark.
rtx
gen_floathitf2 (operand0, operand1)
 rtx operand0;
 rtx operand1;

{
 return gen_rtx_SET (VOIDmode,
 operand0,
 gen_rtx_FLOAT (TFmode,
 operand1));

}

rtx
gen_floatsitf2 (operand0, operand1)
 rtx operand0;
 rtx operand1;
{
 return gen_rtx_SET (VOIDmode,
 operand0,
 gen_rtx_FLOAT (TFmode,
 operand1));
}

(b) Two semantically identical functions extracted from the 403.gcc benchmark.

Figure 3.1: Example of identical functions.

Note, however, that functions can be identical at the IR or machine level without

necessarily being identical at the source level. Figure 3.2 shows two real functions

extracted from the 447.dealII program in the SPEC CPU2006 [69] benchmark suite.

Although these two functions are not identical at the source level, they become iden-

tical after a template specialisation and some optimisations are applied, in particular,

constant propagation, constant folding, and dead-code elimination. Specialising dim

to 1 enables to completely remove the loop in the function PolynomialSpace. Simi-

larly, specializing dim to 1 results in only the first iteration of the loop in the function

22 Chapter 3. Related Work

template <int dim>
unsigned PolynomialSpace<dim>::
compute_n_pols (const unsigned n) {
 unsigned n_pols = n;
 for (unsigned i=1; i<dim; ++i) {
 n_pols *= (n+i);
 n_pols /= (i+1);
 }
 return n_pols;
}

unsigned PolynomialSpace<1>::
compute_n_pols(const unsigned n) {
 return n;
}

template <int dim> inline
unsigned TensorProductPolynomials<dim>::
x_to_the_dim (const unsigned x) {
 unsigned y = 1;
 for (unsigned d=0; d<dim; ++d) {
 y *= x;
 }
 return y;
}

unsigned TensorProductPolynomials<1>::
x_to_the_dim(const unsigned x) {
 return x;
}

After template specialization and applying optimizations:

Figure 3.2: Two functions extracted from the 447.dealII benchmark that are not iden-

tical at the source level, but after applying template specialisation and optimisations

they become identical at the IR level.

TensorProductPolynomials being executed. The compiler is able to statically ana-

lyze and simplify the loops in both functions, resulting in the identical functions shown

at the bottom of Figure 3.2.

Identical code is particularly common in C++ programs with heavy use of para-

metric polymorphism, via template or auto type deduction.

3.2.1 Merging Identical Object Code During Link Time

The simplest way of merging identical functions is by looking at their object code, dur-

ing link time. Identical code folding (ICF) is an optimisation that identifies and merges

two or more read-only sections, typically functions, that have identical contents. This

optimisation is commonly found in major linkers, such as gold [44, 70], LLVM’s lld,

and the MSVC linker [1].

Before applying ICS, it is a common practice for linkers to place functions in sepa-

rate sections [44, 70]. Therefore, merging identical functions can be generalised to the

problem of merging identical sections. In the simplest case, two functions or sections

are identical if they have exactly the same binary representation. In general, two sec-

tions are considered identical if they have the identical section flags, data, code, and

relocations. Two relocations are considered identical if they have the same relocation

types, values, and if they point to the same or, recursively, identical sections.

Once a set of identical functions have been identified, merging them requires a

simple operation. Only one of the functions in the set is kept for the final binary

3.2. Merging Identical Functions 23

and all the other copies are discarded. Afterwards, every reference to the discarded

functions must be redirected to the kept function.

Since the equality relation has a cyclic definition, ICF is defined as a fixed-point

computation, i.e., it is applied repeatedly until a convergence is obtained. There are

two approaches with distinct trade-offs: (i) The pessimistic approach starts with all

sections marked as being different and then repeatedly compares them trying to prove

their equality, grouping those found to be identical, including their relocations. This

approach is implemented in the widely used gold linker. (ii) The optimistic approach

starts with all functions marked as potentially identical and then repeatedly compares

them trying to disprove their equality, partitioning those found to be different. This

approach is implemented in LLVM’s linker, lld.

3.2.2 Identical Function Merging

A similar optimisation for merging identical functions, but instead at the intermediate

representation (IR) level, is also offered by both GCC and LLVM [2, 50]. This optimi-

sation is only flexible enough to accommodate simple type mismatches provided they

can be bitcast in a lossless way.

A very strict function comparator is used to identify if two functions are seman-

tically equivalent. First it compares the signature and other general attributes of the

two functions. The functions must have identical signature, i.e., the same return type,

the same number of arguments, and exactly the same list of argument types. Then this

function comparator performs a simultaneous walk, in depth first order, in the func-

tions’ control-flow graphs. This walk starts at the entry block for both functions, then

takes each block from each terminator in order. As an artifact, this also means that

unreachable blocks are ignored. Finally, it iterates through each instruction in each

basic block. Two blocks are equivalent if they have equivalent instructions in exactly

the same order, without excess. The comparator always fails conservatively, erring on

the side of claiming that two functions are different.

When a pair of equivalent functions is identified, we can create either an alias or a

thunk. Aliasing entails eliminating one of the functions and replacing all its call-sites

to the other function. Thunks must be created when neither of the equivalent functions

can be eliminated by aliasing. In such case, a thunk is created for either one of the

functions, replacing its body by a call to the other function, which allows all call-sites

and name references to both functions to be preserved. Aliasing is preferred since it is

24 Chapter 3. Related Work

cheaper and adds no runtime overhead. The appropriate merging is applied according

to following rules:

• If the address of at least one function is not taken, alias can be used.

• If the function is part of a COMDAT section that can be replaced, we must

replace it with a thunk.

• If we create a thunk and none of the functions are writeable, we can redirect calls

instead.

Although very restrictive, this optimisation guarantees that any pair of mergeable func-

tions will result in code size reduction with no performance overhead.

Its simplicity also allows for an efficient exploration approach based on computing

a hash of the functions and then using a binary tree to identify equivalent functions.

Since hashing is cheap to compute, it allows us to efficiently group possibly equivalent

functions and filter out functions that are obviously unique. This hash must have the

property that if function F = G according to the comparison function, then hash(F) =

hash(G). Therefore, as an optimisation, two functions are compared only if they have

the same hash. This consistency property is critical to ensuring all possible merging

opportunities are exploited. Collisions in the hash affect the speed of the pass but not

the correctness or determinism of the resulting transformation.

A function hash is calculated by considering only the number of arguments and

whether a function contains variadic parameters, the order of basic blocks (given by

the successors of each basic block in depth first order), and the order of opcodes of

each instruction within each of these basic blocks. The basic blocks are traversed in

depth first order with each of their instructions processed individually. Because this

hash computation ignores operands, it is insensitive to things such as the target of calls

and the constants used in the function, which makes it useful when possibly merging

functions which are the same modulo constants and call targets.

All functions can be sorted based on their hash value, which ends up grouping pos-

sibly equivalent functions together. If the hash value of a given function matches any

of its adjacent values in the sorted list, this function must be considered for merging.

Functions with a unique hash value can be easily ignored since no other function will

be found equivalent.

The functions that remain are inserted into a binary tree, where functions are the

node values themselves. An order relation is defined over the set of functions. We need

total-ordering, so we need to maintain four properties on the functions set:

3.3. Merging Beyond Identical Functions 25

• a <= a (reflexivity);

• if a <= b and b <= a then a = b (antisymmetry);

• if a <= b and b <= c then a <= c (transitivity);

• for all a and b, a <= b or b <= a (totality).

This total-ordering was made through special function comparison procedure that re-

turns:

• 0 when functions are semantically equal,

• -1 when the left hand function is less than the right hand function, and

• 1 for the opposite case.

Functions are kept on binary the tree. For each new function F we perform lookup

in binary the tree.

3.3 Merging Beyond Identical Functions

In the previous sections, we have seen compiler optimisations that merge identical

functions. However, nearly identical functions, with only minor differences, are also

commonly found. Figure 3.3 shows two examples of nearly identical functions found

in real programs. The highlighted differences prevent these functions from being

merged by the identical function merging techniques. The first pair of functions, shown

in Figure 3.3a, illustrates code that is usually produced by copy-and-paste program-

ming, where a given code pattern is copied and then repurposed [4, 36, 40]. The

second pair of functions, shown in Figure 3.3b, are produced by generative program-

ming [16, 20], where their code was automatically generated using a description lan-

guage [26].

Edler von Koch et al. [23] have proposed a function-merging technique which ex-

ploits structural similarity among functions. Their optimisation is able to merge nearly

identical functions. Two functions are structurally similar if both their function types

are equivalent and their CFGs are isomorphic. Two function types are equivalent if

they agree in the number, order, and types of their parameters as well as their return

types, linkage type, and other compiler-specific properties. In addition to the struc-

tural similarity of the functions, their technique also requires that corresponding basic

26 Chapter 3. Related Work

double DMin(double *vec, int n) {
 int i;
 double best;
 best = vec[0];
 for (i=1; i<n; i++)
 if (vec[i] < best)
 best = vec[1];
 return best;

}

double DMax(double *vec, int n) {
 int i;
 double best;
 best = vec[0];
 for (i=1; i<n; i++)
 if (vec[i] > best)
 best = vec[1];
 return best;
}

(a) Two similar functions extracted from the 456.hmmer benchmark.
rtx
gen_peephole2_1270 (curr_insn, operands)
 rtx curr_insn ATTRIBUTE_UNUSED;
 rtx *operands;

{
 rtx _val = 0;
 HARD_REG_SET _regs_allocated;
 CLEAR_HARD_REG_SET (_regs_allocated);
 start_sequence ();
 operands[2] = GEN_INT(
 exact_log2(INTVAL(operands[1])));
 emit (gen_rtx_PARALLEL (VOIDmode,
 gen_rtvec (2,
 gen_rtx_SET (VOIDmode,
 operands[0],
 gen_rtx_ASHIFT (SImode,
 copy_rtx (operands[0]),
 operands[2])),
 gen_rtx_CLOBBER (VOIDmode,
 gen_rtx_REG (CCmode,
 17)))));
 _val = gen_sequence ();
 end_sequence ();
 return _val;

}

rtx
gen_peephole2_1271 (curr_insn, operands)
 rtx curr_insn ATTRIBUTE_UNUSED;
 rtx *operands;
{
 rtx _val = 0;
 HARD_REG_SET _regs_allocated;
 CLEAR_HARD_REG_SET (_regs_allocated);
 start_sequence ();
 operands[2] = GEN_INT(
 exact_log2(INTVAL(operands[1])));
 emit (gen_rtx_PARALLEL (VOIDmode,
 gen_rtvec (2,
 gen_rtx_SET (VOIDmode,
 operands[0],
 gen_rtx_ASHIFT (DImode,
 copy_rtx (operands[0]),
 operands[2])),
 gen_rtx_CLOBBER (VOIDmode,
 gen_rtx_REG (CCmode,
 17)))));
 _val = gen_sequence ();
 end_sequence ();
 return _val;
}

(b) Two similar functions extracted from the 403.gcc benchmark.

Figure 3.3: Example of two pairs of highly similar functions. Because they are not

identical, they cannot be merged by the function merging technique currently found in

major compilers.

blocks have exactly the same number of instructions and that corresponding instruc-

tions must have equivalent resulting types. Mergeable functions are only allowed to

differ in corresponding instructions, where they can differ in their opcodes or in the

number and type of their input operands. Corresponding named values must have the

same data type.

Because their technique is limited to functions with identical CFGs and function

types, once it merges a pair of functions, a third similar function cannot be merged

into the resulting merged function since they will differ in both CFGs and their lists of

parameters. Due to this limiting factor, the state-of-the-art has to first group mergeable

functions before simultaneously merging all functions within a group.

3.3. Merging Beyond Identical Functions 27

Their algorithm iterates simultaneously over corresponding basic blocks in the set

of functions being merged, as they have isomorphic CFGs. Figure 3.4 shows an ex-

ample of two functions with isomorphic CFGs and their corresponding basic blocks

arranged side by side.

 %c = icmp sgt %c, 0

Lb1

br %c, Lb2, Lb3

 %x = mul %c, 3

Lb2

%y = call foo(%mul)
br Lb4

 %c = icmp sgt %c, 0

Lb1

br %c, Lb2, Lb3

 %w = mul %c, %c

Lb3

%z = sdiv %w, %d
br Lb4

 %r = phi [%y], [%z]

Lb4

ret %r

 %r = phi [%y], [%z]

Lb4

ret %r

 %x = mul %c, 5

Lb2

%y = call bar(%mul)
br Lb4

 %w = mul %c, %c

Lb3

%z = sdiv %w, %d
br Lb4

F1 F2

F1 F2

F1 F2

F1 F2

Figure 3.4: An example of two functions with isomorphic CFGs and their corresponding

basic blocks arranged side by side. Instructions in paired basic blocks are compared in

a pairwise manner.

Every pair of basic blocks have their instructions analysed in a pairwise manner.

Two instructions match if they have the same opcode with equivalent data types and

operands. Even if two instructions differ only on their operands, they are classified as

mismatching. For every pair of basic blocks, if their corresponding instructions have

any difference, except for the data type of the computed value, the merged basic block

is split by inserting a switch branch to select which instruction to execute depending

on a function identifier. A phi-node is used to unify the mismatching instructions as a

single named value. This unification is only possible because they compute values of

the equivalent data types. Note that no operand selection is performed, every use of

the mismatching instructions will refer to their phi-node. Figure 3.5 shows an example

of a merged basic block containing two mismatching pairs of instructions. A split is

added for every pair of mismatching instructions with the phi-node instruction added

to the their immediate point of convergence.

Overall, except for mismatching pairs of instructions, the two functions must have

identical function types, i.e., they must have the same return type and list of arguments,

28 Chapter 3. Related Work

 switch %fid, %Lb21

Lb2

 [1, %Lb22]

 switch %fid, %Lb21

Lb23

 [1, %Lb22]

%x = phi [%x1], [%x2]

 br Lb4

Lb26

%y = phi [%y1], [%y2]

 %x2 = mul %c, 5

Lb22

br Lb23

 %x1 = mul %c, 3

Lb21

br Lb23
F2F1

 %y2 = call bar(%mul)

Lb25

br Lb26

 %y1 = call foo(%mul)

Lb24

br Lb26
F2F1

Figure 3.5: An example of a merged basic block containing two mismatching pairs of

instructions. A split is added for every pair of mismatching instructions with the phi-node

instruction added to their immediate point of convergence.

identical CFGs, with corresponding basic blocks having the same number of instruc-

tions. Although this technique improves over LLVM’s identical function merging, it

is still unnecessarily limited. In Section 6.1, we showed examples of very similar real

functions where the technique proposed by Edler von Koch et al. [23] fails to merge.

In Chapter 4 we introduce a novel technique that addresses such limitations improving

on their technique across the board.

3.4 Code Factoring

Code factoring refers to related techniques that address the same fundamental prob-

lem of duplicated code in a different way. Code factoring can be applied at different

levels of the program [51]. Local factoring, also known as local code motion, moves

identical instructions from multiple basic blocks to either their common predecessor

or successor, whenever valid [7, 41, 51]. Procedural abstraction finds identical code

that can be extracted into a separate function, replacing all replicated occurrences with

a function call [21, 51].

Procedural abstraction differs from function merging as it usually works on single

3.5. Code Similarity 29

basic blocks or single-entry single-exit regions. Moreover, it only works for identical

segments of code, and every identical segment of code is extracted into a separate new

function. Function merging, on the other hand, works on whole functions, which can

be identical or just partially similar, producing a single merged function.

However, all these techniques are orthogonal to the proposed optimisation and

could complement each other at different stages of the compilation pipeline.

3.5 Code Similarity

Code similarity has also been used in other compiler optimisations or tools for software

development and maintenance. In this section, we describe some of these applications.

Coutinho et al. [13] proposed an optimisation that uses instruction alignment to

reduce divergent code for GPU. They are able to fuse divergent branches that contain

single basic blocks, improving GPU utilisation.

Similarly, analogous algorithms have also been suggested to identify the differ-

ences between two programs, helping developers with source-code management and

maintenance [52, 79]. These techniques are applied in tools for source-code manage-

ment, such as the diff command [52].

Similar techniques have also been applied to code editors and IDEs [65, 72]. For

example, SourcererCC [65] detects possible clones, at the source level, by dividing the

programs into a set of code blocks where each code block is itself represented by a

bag-of-tokens, i.e., a set of tokens and their frequencies. Tokens are keywords, literals,

and identifiers, but not operators. Code blocks are considered clones if their degree

of similarity is higher than a given threshold. In order to reduce the number of blocks

compared, candidate blocks are filtered based on a few of their tokens where at least

one must match.

Our ranking mechanism uses an approach similar to SourcererCC, where we use

opcode frequencies and type frequencies to determine if two functions are likely to

have similar code. However, we need a precise and effective analysis of code simi-

larity when performing the actual merge. To this end, we use a sequence alignment

technique.

30 Chapter 3. Related Work

3.6 Reducing Hardware Area via Datapath Merging

Area is critical in hardware design [9, 53, 80]. Area reduction is achieved by reusing

resources such as hardware blocks (functional units and registers) and interconnections

(multiplexers and wires). It also has the potential benefit of reducing manufacturing

costs and power consumption [9, 53, 80].

Datapath merging is an important technique for reducing hardware area by reusing

resources [9, 53, 80]. A path in the data-flow graph (DFG) represents a sequence of

machine-level operations. Therefore, isomorphic paths in the DFG can be merged in

order to reduce area via resource sharing.

Brisk et al. [9] proposes a the maximum area common subsequence, which is a

variant of the well-known longest common subsequence algorithm. The goal is to

favour shorter sequences of high-area components over longer sequences of low-area

components. This allows them to efficiently identify isomorphic paths in the DFG.

Isomorphic datapaths are merged by rewiring hardware components and inserting mul-

tiplexers where necessary.

Area reduction in hardware design is closely related to code size reduction. Hence,

the problem of datapath merging and function merging also share several similarities.

We plan to further investigate this connection in the future.

3.7 Summary

This chapter has surveyed the relevant literature in the fields of code size optimisation,

with a special focus on function merging, as well as other aspects of code similarity,

and area reduction in the context of hardware design. The next chapter presents a

novel function merging technique capable of merging arbitrary pairs of functions. This

represents a significant improvement over the existing literature. In later chapters, we

build upon our novel function merging technique.

Chapter 4

Function Merging by Sequence

Alignment

In this chapter, we present our novel function merging technique, called FMSA. Our

approach is based upon the concept of sequence alignment, developed in bioinformat-

ics for identifying functional or evolutionary relationships between different DNA or

RNA sequences. Similarly, we use sequence alignment to find areas of functional sim-

ilarity in arbitrary function pairs. Aligned segments with equivalent code are merged.

The remaining segments where the two functions differ are added to the new function

with their code guarded by a function identifier. This approach can lead to significant

code size reduction.

Applying sequence alignment to all pairs of functions is prohibitively expensive

even for medium sized programs. To counter this, our technique is integrated with a

ranking-based exploration mechanism that efficiently focuses the search to the most

promising pairs of functions. As a result, we achieve our code size savings while

introducing little compilation-time overhead.

Compared to identical function merging, we introduce extra code to be executed,

namely the code that chooses between dissimilar sequences in merged functions. A

naive implementation could easily hurt performance, e.g by merging two hot functions

with only few similarities. Our implementation can avoid this by incorporating profil-

ing information to identify blocks of hot code and effectively minimise the overhead

in this portion of the code.

In this chapter, we make the following contributions:

• We are the first to allow merging arbitrary functions, even ones with different

signatures and CFGs.

31

32 Chapter 4. Function Merging by Sequence Alignment

• A novel ranking mechanism for focusing inter-procedural optimisations to the

most profitable function pairs.

• Our function merging by sequence alignment technique is able to reduce code

size by up to 25% on Intel and 30% on ARM, significantly outperforming the

previous technique proposed by Edler von Koch et al. [23], while introducing

minimal compile-time and run-time overheads.

4.1 Motivation

In this section we make the argument for a more powerful function merging approach.

Consider the examples from two SPEC CPU2006 benchmarks shown in Figures 4.1

and 4.2.

glist_t glist_add_float32(glist_t g, float32 val){
 gnode_t *gn;
 gn = (gnode_t *) mymalloc (sizeof(gnode_t));
 gn->data.float32 = val;
 gn->next = g;
 return ((glist_t) gn);
}

glist_t glist_add_float64(glist_t g, float64 val){
 gnode_t *gn;
 gn = (gnode_t *) mymalloc (sizeof(gnode_t));
 gn->data.float64 = val;
 gn->next = g;
 return ((glist_t) gn);
}

glist_t merged(bool func_id,
 glist_t g, float32 v32, float64 v64){
 gnode_t *gn;
 gn = (gnode_t *) mymalloc (sizeof(gnode_t));
 if (func_id)
 gn->data.float32 = v32;
 else
 gn->data.float64 = v64;
 gn->next = g;
 return ((glist_t) gn);
}

Merged Function

Figure 4.1: Example of two functions from the benchmark sphinx with different param-

eters that could be merged, as shown at the bottom. We highlight where they differ.

Figure 4.1 shows two functions from the 482.sphinx3 benchmark. The two func-

tions are almost identical, only their function arguments are of different types, float32

and float64, causing a single operation to be different. As shown at the bottom of

4.2. Our Approach 33

Figure 4.1, these functions can be easily merged in three steps. First, we expand the

function argument list to include the two parameters of different types. Then, we add

a function identifier, func id, to indicate which of the two functions has been called.

Finally, we place the pieces of code that are unique to one of the functions in a condi-

tional branch predicated by the func id. Overall, merging these two functions reduces

the total number of machine instructions by 18% in the final object file for the Intel x86

architecture.

Despite being so similar, neither GCC nor LLVM can merge the two functions.

They can only handle identical functions, allowing only for type mismatches that can

be merged by lossless bitcasting the conflicting values. Similarly, the previous state of

the art [23], while more powerful, cannot merge the two functions either. It requires

both functions to have the same list of parameters.

Figure 4.2 shows another two functions extracted from 462.libquantum. While

these two functions have the same signature, i.e. the same return type and list of param-

eters, they differ slightly in their bodies. Merging them manually is straightforward,

as shown at the bottom of Figure 4.2, reducing the number of instructions by 23%

in the final object file. But again, none of the existing techniques can merge the two

functions. The state-of-the-art can work with non-identical functions, but it needs their

CFGs to be identical. Even a single extra basic block, as in this case, makes merging

impossible.

These examples show that all existing techniques are severely limited. Optimi-

sation passes in production compilers work only on effectively identical functions.

State-of-the-art techniques can merge functions only when they are structurally identi-

cal, with isomorphic CFGs, and identical signatures. All of them miss massive oppor-

tunities for code size reduction. In the next sections, we show a better approach which

removes such constraints and is able to merge arbitrary functions, when it is profitable

to do so.

4.2 Our Approach

In this section we describe our proposed function merging technique and show how it

merges the motivating examples. Our technique works on any two arbitrary functions,

even when they have few similarities and merging them would be counter-productive.

For that reason, we also introduce a cost model to decide when it is beneficial to merge

two functions (see Section 4.3.1). To avoid an expensive quadratic exploration, we

34 Chapter 4. Function Merging by Sequence Alignment

void q_cond_phase_inv(
int control, int target, qreg *reg){
 int i;
 COMPLEX_FLOAT z;

 z = q_cexp(-pi / (1 << (control - target)));
 for(i=0; i<reg->size; i++) {
 if(reg->node[i].state & (1 << control)) {
 if(reg->node[i].state & (1 << target))
 reg->node[i].amplitude *= z;
 }
 }
 q_decohere(reg);
}

void q_cond_phase(
int control, int target, qreg *reg){
 int i;
 COMPLEX_FLOAT z;
 if(q_objc_put(COND_PHASE, control, target))
 return;
 z = q_cexp(pi / (1 << (control - target)));
 for(i=0; i<reg->size; i++) {
 if(reg->node[i].state & (1 << control)) {
 if(reg->node[i].state & (1 << target))
 reg->node[i].amplitude *= z;
 }
 }
 q_decohere(reg);

}

(a) Pair of similar input functions.
void merged(bool func_id,
int control, int target, qreg *reg){
 int i;
 COMPLEX_FLOAT z;
 if(func_id)
 if(q_objc_put(COND_PHASE, control, target))
 return;
 float var = (func_id)?pi:(-pi);
 z = q_cexp(var / (1 << (control - target)));
 for(i=0; i<reg->size; i++) {
 if(reg->node[i].state & (1 << control)) {
 if(reg->node[i].state & (1 << target))
 reg->node[i].amplitude *= z;
 }
 }
 q_decohere(reg);

}

(b) Function produced by merging both input functions.

Figure 4.2: Example of two functions from the benchmark libquantum with different

CFGs that could be merged, as shown at the bottom. We highlight where they differ.

integrate our profitability analysis with an efficient ranking mechanism based on a

lightweight fingerprint of the functions.

4.2.1 Overview

Intuitively, when we are manually merging two functions, in a textual format, we try

to visualise them side by side, identifying the equivalent segments of code and the

non-equivalent ones. Then, we use this understanding to create the merged function.

In this chapter, we propose a technique that follows this simple yet effective principle.

At the core of our technique lies a sequence alignment algorithm, which is responsible

for arranging the code in segments that are either equivalent or non-equivalent. We im-

4.2. Our Approach 35

plement this technique at the level of the intermediate representation (IR). Our current

implementation assumes that the input functions have all their φ-functions demoted to

memory operations, simplifying our code generation.

Linearization

Sequence Alignment

Code Generation

Figure 4.3: Overview of our function-merging technique. Equivalent segments of code

is represented in light green and the non-equivalent ones in dark red.

The proposed technique consists of three major steps, as depicted in Figure 4.3.

First, we linearise each function, representing the CFG as a sequence of labels and in-

structions. The second step consists of applying a sequence alignment algorithm, bor-

rowed from bioinformatics, which identifies regions of similarity between sequences.

The sequence alignment algorithm allows us to arrange two linearised functions into

segments that are equivalent between the two functions and segments where they differ

from one another. The final step performs the code generation, actually merging the

two functions. Aligned segments with equivalent code are merged, avoiding redun-

dancy, while the remaining segments where the two functions differ have their code

guarded by a function identifier.

During code generation, we create a merged list of parameters, including the extra

function identifier if there are any dissimilar segments. Arguments of the same type

are shared between the functions, without necessarily keeping their original order. We

also allow for the return types to be different, in which case we use an aggregate type to

return values of both types. If one of them is void, then we do not create an aggregate

type, we just return the non-void type. Given the appropriate function identifier, the

merged function is semantically equivalent to the original functions, so we replace

all of their invocations with the new function. It should be noted that in the special

case where we merge identical functions, the output is also identical, emulating the

behaviour of function merging in production compilers.

After producing the merged function, the bodies of the original functions are re-

placed by a single call to this new function, creating what is sometimes called a thunk.

In some cases, it may also be valid and profitable to completely delete the original

36 Chapter 4. Function Merging by Sequence Alignment

functions, remapping all their original calls to the merged function. Two of the key

facts that prohibit the complete removal of the original functions are the existence of

indirect calls or the possibility of external linkage.

4.2.2 Linearisation

Linearization

label
call
call
store

store
br

load

B1

alloca
alloca
bitcast
icmp eq
store
br

B0label

load
ret

B2label

alloca
alloca
bitcast

label

icmp eq
store
br
label
call
call
store

store
br

load

label
load
ret

B0

B1

B2

Figure 4.4: Linearizing the CFG of an example function.

Linearisation is a key step for enabling the use of sequence alignment. Although

linearisation of CFGs usually refers to a predicated representation, resulting from an

if-conversion, in this thesis, we use a simpler definition. Our linearisation takes the

CFG of the function, specifies a traversal order of the basic blocks, and for each block

outputs its label and its instructions. It maintains the original ordering of the instruc-

tions inside each basic block. The edges of the CFG are implicitly represented with

branch instructions having the target labels as operands. Figure 4.4 shows a simplified

example of linearizing the CFG of a real function extracted from the SPEC CPU2006

400.perlbench benchmark.

The traversal order we use for linearisation has no effect on the correctness of the

transformation but it can impact its effectiveness. We empirically chose a reverse post-

order traversal with a canonical ordering of successor basic blocks. This strategy leads

to good performance in our experiments.

4.2.3 Sequence Alignment

When merging two functions, the goal is to identify which pairs of instructions and

labels that can be merged and which ones need to be selected based on the actual

4.2. Our Approach 37

function being executed. To avoid breaking the semantics of the original program, we

also need to maintain the same order of execution of the instructions for each one of

the functions.

To this end, after linearisation, we reduce the problem of merging functions to the

problem of sequence alignment. Figure 4.5 shows an example of the sequence align-

ment between two linearised functions extracted from the 400.perlbench benchmark

in SPEC CPU2006 [69].
al

lo
ca

al
lo

ca
al

lo
ca

bi
tc

as
t

bi
tc

as
t

la
be

l
la

be
l

al
lo

ca

ic
m

p
eq

ic
m

p
ul

t

st
or

e
st

or
e

br
br

la
be

l
la

be
l

se
xt ge
p

lo
ad ad
d

ca
ll

ca
ll

st
or

e
st

or
e

lo
ad

st
or

e

st
or

e
br

br
la

be
l

la
be

l

lo
ad

lo
ad

st
or

e

lo
ad

lo
ad

re
t

re
t

Figure 4.5: The sequence alignment between two functions.

Specifically for the function merging, we are concerned with the alphabet consist-

ing of all possible typed instructions and labels. Every linearised function represents

a sequence derived from this alphabet. We explain the equivalence relation used for

this alphabet in the next section. Although we only consider pair-wise alignments, the

technique would also work for multi-sequences.

Our work uses the Needleman-Wunsch algorithm [57], with the standard scoring

scheme, to perform sequence alignment. This algorithm gives an alignment that is

guaranteed to be optimal for a given scoring scheme [34], however, other algorithms

could also be used with different performance and memory usage trade-offs [10, 33,

57, 68]. Different alignments would produce different but valid merged functions.

4.2.4 Equivalence Evaluation

Before we merge functions, we first need to define what makes two pieces of code

equivalent and therefore mergeable. In this section, we define equivalence in two sep-

arate cases, the equivalence between instructions and the equivalence between labels.

In general, two instructions are equivalent if: (1) their opcodes are semantically

equivalent, but not necessarily the same; (2) they both have equivalent types; and (3)

38 Chapter 4. Function Merging by Sequence Alignment

they have pairwise operands with equivalent types. Types are equivalent if they can be

bitcast in a lossless way from one to the other. For pointers, we also need to make sure

that there is no conflict regarding memory alignment. In the special case of function

calls, type equivalence means that both instructions have identical function types, i.e.

identical return types and identical list of parameters.

Labels can represent both normal basic blocks and landing blocks used in exception

handling code. Labels of normal basic blocks are ignored during code equivalence

evaluation, but we cannot do the same for landing blocks. We describe how we handle

such blocks in more detail in the following section.

Exception Handling Code

Most modern compilers, including GCC and LLVM, implement the zero-cost Itanium

ABI for exception handling [17] sometimes called the landing-pad model. This model

consists of: (1) invoke instructions that have two successors, one for the normal ex-

ecution and one for handling exceptions, called the landing block; (2) landing-pad

instructions that encode which action is taken when an exception has been thrown.

The invoke instruction co-operates tightly with its landing block. The landing block

must have a landing-pad instruction as its first non-φ instruction. As a result, two

equivalent invoke instructions must also have landing blocks with identical landing-

pad instructions. This verification is made easy by having the landing-pad instruction

as the first instruction in a landing block. Similarly, landing-pad instructions are equiv-

alent if they have exactly the same type and also encode identical lists of exception and

cleanup handlers.

4.2.5 Code Generation

The code generation phase is responsible for producing a new function from the out-

put of the sequence alignment. Our four main objectives are: merging the parameter

lists; merging the return types; generating select instructions to choose the appropriate

operands in merged instructions; and constructing the CFG of the merged function.

Our approach can effectively handle multiple different function merging scenarios:

• identical functions,

• functions with differing bodies,

• functions with different parameter lists,

4.2. Our Approach 39

• functions with different return types,

• and any combination of these cases.

To maintain the semantics of the original functions, we must be able to pass their

parameters to the new merged function. The merged parameter list is the union of the

original lists, with placeholders of the correct type for any of the parameters. Main-

taining the original order is not important for maintaining semantics, so we make no

effort to do so. If the two functions have differing bodies, we add an extra binary

parameter, called the function identifier, to the merged list of parameters. This extra

parameter is required for selecting code that should be executed only for one of the

merged functions.

Figure 4.6 depicts how we merge the list of parameters of two functions. First, we

create the binary parameter that represents the function identifier, one of the functions

will be identified by the value true and the other by the value false. We then add all

the parameters of one of the functions to the new list of parameters. Finally, for each

parameter of the second function, we either reuse an existing and available parameter

of identical type from the first function or we add a new parameter. We keep track of

the mapping between the lists of parameters of the original functions and the merged

function so that, later, we are able to update the function calls. When replacing the

function calls to the new merged function, parameters that are not used by the original

function being called will receive undefined values.

The reuse of parameters between the two merged functions provides the following

benefits: (1) it reduces the overheads associated with function call abstractions, such

as reducing the number of values required to be communicated between functions. (2)

if both functions use merged parameters in similar ways, it will remove some of the

cases where we need select instructions to distinguish between the functions.

i1 i32 i32* float

double float float

i1 i32 i32* float double float

i32 i32*

i1

Function 1

Function 2

FuncID

Figure 4.6: Example of a merge operation on the parameter lists of two functions.

There are multiple valid ways of merging parameter lists. For example, multiple

parameters of one function may have the same type as a given parameter from the other

40 Chapter 4. Function Merging by Sequence Alignment

function. In such cases, we select parameter pairs that minimise the number of select

instructions. We find them by analyzing all pairs of equivalent instruction that use the

parameters as operands. Our experiments show that maximizing the matching of pa-

rameters, compared to never merging them, improves code-size reduction of individual

benchmarks by up to 7%.

Our technique is able to merge any return types. When merging return types, we

select the largest one as the base type. Then, we use bitcast instructions to convert

between the types. Before a return instruction, we bitcast the values to the base return

type. We reverse this at the call-site, where we cast back to the original type. Having

identical types or void return are just special cases where casting is unnecessary. In the

case of void types, we can just return undefined values since they will be discarded at

the corresponding call-sites.

After generating the merged list of parameters and return type, we produce the

CFG of the merged function in two passes over the aligned sequence. The first pass

creates the basic blocks and instructions. The second assigns the correct operands to

the instructions and connects the basic blocks. A two-passes approach is required in

order to handle loops, due to cyclic data dependencies.

First, for each entry in the aligned sequence, we either create a new basic block

for labels or we add a cloned instruction to the appropriate basic block. If the label

represents a landing block, a landing-pad instruction is also added to the new basic

block. During this process, we keep a mapping from the instructions and labels in the

original functions to their corresponding values in the new merged function. We need

this mapping to generate the use-definition chains for the merged function, which is

done by pointing the operands of the instructions to the correct values in the function.

However, at this point, the cloned instructions are given empty operands, as we are still

creating the complete mapping.

While iterating over the aligned sequence, we also need to create extra basic blocks

and branch instructions in order to maintain the semantics of the original functions,

guarding the execution of instructions that are unique to one of the functions being

merged. When transitioning from matching instructions or labels to non-matching

ones, we need to branch to new basic blocks based on the function identifier. When

transitioning back from non-matching segments to a matching segment, we need to

reconnect both divergent points by branching back to a single new basic block where

merged instructions will be added. This process generates diamond shaped structures

in the CFG.

4.3. Focusing on Profitable Functions 41

The second pass over the aligned sequence creates the operands of all instructions.

We use the previously created mapping in order to identify the correct operands for

each instruction in the merged function. There are two main cases: (1) Creating the

operands for non-matching instructions (i.e. those that occur in just one function) is

straightforward. In this case, we only need to use the values on which the operands

of the original instruction map. (2) Matching instructions can have different values in

corresponding operands in each one of the original functions. If this is the case and

the original operands map to different values V1 and V2, then we need to choose at

runtime the correct value based on the function identifier. We do with an extra select

instruction “select (func id==1), V 1, V 2”, which computes the operand of the

merged instruction. If the two values are statically identical, then we do not need a

select.

If the operands are labels, instead of adding a select instruction, we perform operand

selection through divergent control flow, using a new basic block and a conditional

branch on the function identifier. If the two labels represent landing blocks, we hoist

the landing-pad instruction to the new common basic block, converting it to a landing

block and converting the two landing blocks to normal basic blocks. This is required

for the correctness of the landing-pad model.

Similar to previous work on vectorisation [62], we also exploit commutative in-

structions in order to maximise similarity. When assigning operands to commuta-

tive instructions, we perform operand reordering to maximise the number of matching

operands and reduce the total number of select instructions required. It is also impor-

tant to note that if we are merging two identical functions, no select or extra branch

instruction will be added. As a result, we can remove the extra parameter that repre-

sents the function identifier.

4.3 Focusing on Profitable Functions

Although the proposed technique is able to merge any two functions, it is not always

profitable to merge them. In fact, as it is only profitable to merge functions that are

sufficiently similar, for most pairs of functions, merging them increases code size.

In this section, we introduce our framework for efficiently exploring the optimisation

space, focusing on pairs of functions that are profitable to merge.

For every function, ideally, we would like to try to merge it with all other functions

and choose the pair that maximises the reduction in code size. However, this quadratic

42 Chapter 4. Function Merging by Sequence Alignment

exploration over all pairs of functions results in prohibitively expensive compilation

overhead. In order to avoid the quadratic exploration of all possible merges, we pro-

pose the exploration framework shown in Figure 4.7 for our optimisation.

Input
Functions

Candidates
Ranking

Function
Merging

Call Graph
Update

Profitable?

Yes

No

Linearized
Functions

Fingerprints

Optimizer

End Loop

Loop

Loop

Output
FunctionsEnd

Loop

Fingerprint
Extraction

Pre-processor

Figure 4.7: Overview of our exploration framework.

The proposed framework is based on a light-weight ranking infrastructure that uses

a fingerprint of the functions to evaluate their similarity. It starts by precomputing

and caching fingerprints for all functions. The purpose of fingerprints is to make it

easy to discard unpromising pairs of functions so that we perform the more expensive

evaluation only on the most promising pairs. To this end, the fingerprint consists of:

(1) a map of instruction opcodes to their frequency in the function; (2) the set of

types manipulated by the function. While functions can have several thousands of

instructions, an IR usually has just a few tens of opcodes, e.g., the LLVM IR has only

about 64 different opcodes. This means that the fingerprint needs to store just a small

integer array of the opcode frequencies and a set of types, which allows for an efficient

similarity comparison.

By comparing the opcode frequencies of two functions, we are able to estimate the

best case merge, which would happen if all instructions with the same opcode could

match. This is a very optimistic estimation. It would be possible only if instruction

types and order did not matter. We refine it further by estimating another best case

merge, this time based on type frequencies, which would happen if all instructions

4.3. Focusing on Profitable Functions 43

with the same data type could match.

Therefore, the upper-bound reduction, computed as a ratio, can be generally de-

fined as

UB(f1, f2,K) =

∑
k∈K

min{ f req(k, f1), f req(k, f2)}

∑
k∈K

f req(k, f1)+ f req(k, f2)

where UB(f1, f2,Opcodes) computes the opcode-based upper bound and UB(f1, f2,Types)

computes the type-based upper bound. The final estimate selects the minimum upper

bound between the two, i.e.,

s(f1, f2) = min{UB(f1, f2,Opcodes),UB(f1, f2,Types)}

This estimate results in a value in the range [0,0.5], which encodes a description that

favours maximizing both the opcode and type similarities, while also minimizing their

respective differences. Identical functions will always result in the maximum value of

0.5.

For each function f1, we use a priority queue to rank the topmost similar candidates

based on their similarity, defined by s(f1, f2), for all other functions f2. We use an

exploration threshold to limit how many top candidates we will evaluate for any given

function. We then perform this candidate exploration in a greedy fashion, terminating

after finding the first candidate that results in a profitable merge and committing that

merge operation.

1 2 3 4 5 6 7 8 9 10

Position of the Profitable Candidates

85.0

87.5

90.0

92.5

95.0

97.5

100.0

C
o
ve

ra
g

e
 (

%
)

Figure 4.8: Average CDF for the position of the profitable candidate and the percentage

of merged operations covered. 89% of the merge operations happen with the topmost

candidate.

Ideally, profitable candidates will be as close to the top of the rank as possible.

Figure 4.8 shows the cumulative distribution of the position of the profitable candidates

in a top 10 rank. It shows that about 89% of the merge operations occurred with the

44 Chapter 4. Function Merging by Sequence Alignment

topmost candidate, while the top 5 cover over 98% of the profitable candidates. These

results suggest that fingerprint similarity is able to accurately capture the real function

similarity, while reducing the exploration cost by orders of magnitudes, depending on

the actual number and size of the functions.

When a profitable candidate is found, we first replace the body of the two original

functions to a single call to the merged function. Afterwards, if the original functions

can be completely removed, we update the call graph, replacing the calls to the original

functions by calls to the merged function. Finally, the new function is added to the

optimisation working list. Because of this feedback loop, merge operations can also

be performed on functions that resulted from previous merge operations.

4.3.1 Profitability Cost Model

Although the proposed technique is able to merge any two functions, it is not always

profitable to do so. In fact, as it is only profitable to merge functions that are sufficiently

similar, for most pairs of functions, merging them increases code size. Therefore, we

must be able to decide which merge operations are profitable.

A merge operation is profitable when replacing the original pair of functions by

the merged function results in an overall smaller code. Since merging most pairs of

functions tend to produce a much larger function, the profitability analysis is critical

for the optimisation strategy.

In order to estimate the code-size benefit, we first estimate the size of all three

functions. The size of each function is estimated by summing up the estimated binary

size of all instruction in the function. The binary size of each instruction is estimated

by querying the compiler’s built-in target-specific cost model. As described in Sec-

tion 2.1.2, although the cost model estimations are not necessarily precise, they are

useful for comparing two pieces of code and deciding when a replacement is prof-

itable.

In addition to measuring the difference in size of the merged function, we also

need to take into account all extra costs involved in replacing the original functions

with the merged one: (1) for the cases where we need to keep a thunk of the original

functions, preserving their original signatures; and (2) for the cases where we update

the call graph, there might be an extra cost with a call to the merged function due to

the increased number of arguments.

Let c(f) be the code-size cost of a given function f , and δ(fi, f j) represent the extra

4.3. Focusing on Profitable Functions 45

costs involved when replacing or updating function fi with the function f j. Therefore,

given a pair of functions { f1, f2} and the merged function f1,2, we want to maximise

the profit defined as:

∆({ f1, f2}, f1,2) = (c(f1)+ c(f2))− (c(f1,2)+ ε)

where ε = δ(f1, f1,2)+ δ(f2, f1,2). We consider that the merge operation is profitable

if ∆({ f1, f2}, f1,2)> 0.

Even though the use of cost models offer a good trade-off between compilation time

and accuracy, they are expected to contain inaccuracies. Because we are operating on

the IR level, one IR instruction does not necessarily translate to one machine instruc-

tion. Several number of optimisations and code transformations will run afterwards,

modifying the code. Moreover, we cannot know exactly how each IR instruction will

be lowered without actually running the compiler’s backend. The same IR instruction

can be lowered to different machine instructions, depending on its surrounding context,

the instruction selection algorithm, and many other factors. Therefore, there is also an

inherent limitation of estimating the cost of each instruction separately of its context.

4.3.2 Link-Time Optimisation

There are different ways of applying this optimisation, with different trade-offs. We

can apply our optimisation on a per compilation-unit basis, which usually results in

lower compilation-time overheads because only a small part of the whole program is

being considered at each moment. However, this also limits the optimisation opportu-

nities, since only pairs of functions within the same translation unit would be merged.

On the other hand, our optimisation can also be applied in the whole program, for

example, during link-time optimisation (LTO). Optimising the whole program is ben-

eficial for the simple fact that the optimisation will have more functions at its disposal.

It allows us to merge functions across modules.

.c

.c

.c

...

opt

...

FE
FE

FE

opt

opt

link optFM BE .o

Function
Merging

LTO

IR

} Back
End

Front
End

...

Figure 4.9: In our experiments we use a compilation pipeline with a monolithic link-time

optimisation (LTO).

46 Chapter 4. Function Merging by Sequence Alignment

In addition to the benefit of being able to merge more functions, when optimizing

the whole program, we can also be more aggressive when removing the original func-

tions, since we know that there will be no external reference to them. However, if the

optimisation is applied per translation unit, then extra conditions must be guaranteed,

e.g., the function must be explicitly defined as internal or private to the translation unit.

Figure 4.9 shows an overview of the compilation pipeline used throughout our eval-

uation. First, we apply early code-size optimisations (-Os) to each compilation unit.

Then, function merging and further code-size optimisations are applied during mono-

lithic link-time optimisation (LTO). With LTO, object file generation is delayed until

all input modules are known, instead of being generated per translation unit, which

enables more powerful optimisations based on whole-program analyses.

4.4 Evaluation

In this section, we evaluate the proposed optimisation, where we analyze our improve-

ments on code size reduction, as well as its impact on the program’s performance and

compilation-time.

4.4.1 Experimental Setup

We compare our optimisation against the state-of-the-art [23] and LLVM’s identical [2]

function merging techniques. In our evaluation, we refer to the identical function merg-

ing as Identical, the state-of-the-art as SOA, and our approach as FMSA. We also run

LLVM’s identical function merging before both SOA and FMSA, as this helps to reduce

compilation time by efficiently reducing the number of trivially mergeable functions.

All optimisations are implemented in LLVM v8 and evaluated on two benchmark

suites: the C/C++ SPEC CPU2006 [69] and MiBench [28]. The benchmarks are com-

piled in LTO mode, as described in Section 4.3.2. We target two different instruction

sets, the Intel x86-64 and the ARM Thumb. Our Intel test bench has a quad-core

3.4 GHz Intel Core i7 CPU with 16 GiB of RAM. The ARM test bench has a Cortex-

A53 ARMv8 CPU of 1.4 GHz with 1 GiB of RAM. We use the Intel platform for

compiling for either target. As a result, compilation-time is almost identical for both

targets. Changing the target only affects the behaviour of the backend, a very short part

of the pipeline. Because of that, we only report compilation-time overhead results for

one of the targets, the Intel ISA.

4.4. Evaluation 47

For the proposed optimisation, we vary the exploration threshold (Section 4.3) and

we present the results for a range of threshold values. We also show the results for

the oracle exploration strategy, which instead of using a rank-based greedy approach,

merges a function with all candidates and chooses the best one. This oracle is a perfect

ranking strategy but is unrealistic. It requires a very costly quadratic exploration, as

explained in Section 4.3.

4.4.2 Code-Size Reduction

Figure 4.10 reports the code size reduction over the baseline for the linked object.

We observe similar trends of code size reduction on both target architectures. This is

expected because the optimisations are applied at the platform-independent IR level.

Changing the target architecture introduces only second order effects, such as slightly

different decisions due to the different cost model (LLVM’s TTI) and differences in

how the IR is encoded into binary.

Intel x86-64

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0

5

10

15

20

25

R
e
d

u
ct

io
n

 (
%

)

1.
4

ARM Thumb

2.
5 6.

0
6.

2
6.

2
6.

3

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10] FMSA [oracle]

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0

5

10

15

20

25

30

R
e
d

u
ct

io
n

 (
%

)

1.
8
3.

0
5.

7
5.

9
6.

0
6.

1

Figure 4.10: Object file size reduction for Intel (top) and ARM (bottom). We evaluate our

approach (FMSA) under four different exploration thresholds, which control how many

potential merging pairs we examine for each function before making a decision. Even for

a threshold of one, we outperform the state-of-the-art by 2.4× (Intel) and 1.9× (ARM).

Our approach, FMSA, significantly improves over the state-of-the art (SOA). For

the Intel platform, FMSA can achieve an average code size reduction of up to 6.3% (or

6% with the lowest exploration threshold), while the SOA and Identical had an average

reduction of 2.5% and 1.4%, respectively. Similarly, for the ARM platform, FMSA can

achieve an average code size reduction of up to 6.1% (or 5.7% with the lowest thresh-

48 Chapter 4. Function Merging by Sequence Alignment

old), while SOA and Identical had an average reduction of 3% and 1.8%, respectively.

For several of the benchmarks, the proposed technique achieves impressive code size

reduction compared to other merging approaches.

In most cases, LLVM’s identical function merging has very little impact on code

size. We see noticeable impact only on some of the C++ benchmarks, namely, 447.dealII,

450.soplex, 471.omnetpp, 483.xalancbmk. These are the cases that identical func-

tion merging was designed to handle, duplicate functions due to heavy use of templat-

ing. Although the state-of-the-art improves over LLVM’s identical function merging, it

still gets most of its code size reduction for benchmarks with heavy use of templating.

In addition to achieving better results in all of these cases, our technique also shows

remarkable reductions on several of the C benchmarks, especially 462.libquantum

and 482.sphinx3, where other techniques have no real impact.

In Section 6.1, we show two examples extracted from 462.libquantum and 482.sphinx3,

where we detail how existing techniques fail to merge similar functions in these bench-

marks. Our technique is the first that can handle these examples, producing merged

functions equivalent to the handwritten ones shown in Figures 4.1 and 4.2.

Table 4.1: Number and size of functions present in each SPEC CPU2006 benchmark

just before function merging, as well as number of merge operations applied by each

technique.

Benchmarks #Fns Min/Avg/Max Size Identical SOA FMSA[t=1] FMSA[t=10]

400.perlbench 1699 1 / 125 / 12501 12 103 175 200

401.bzip2 74 1 / 206 / 5997 0 0 7 7

403.gcc 4541 1 / 127.7 / 20688 136 341 614 710

429.mcf 24 18 / 87.25 / 297 0 1 1 1

433.milc 235 1 / 67.69 / 416 0 6 26 34

444.namd 99 1 / 570.64 / 1698 1 1 5 5

445.gobmk 2511 1 / 43.22 / 3140 183 485 436 605

447.dealII 7380 1 / 60.63 / 4856 1835 2785 2974 3315

450.soplex 1035 1 / 73.27 / 1719 27 125 156 163

453.povray 1585 1 / 98.05 / 5324 60 112 193 212

456.hmmer 487 1 / 99.98 / 1511 3 16 45 47

458.sjeng 134 1 / 145.06 / 1252 0 5 11 11

462.libquantum 95 1 / 56.64 / 626 0 1 9 9

464.h264ref 523 1 / 171.42 / 5445 3 22 50 52

470.lbm 17 6 / 123.41 / 680 0 0 0 0

471.omnetpp 1406 1 / 26.9 / 611 45 69 227 270

473.astar 101 1 / 67.11 / 584 0 2 4 4

482.sphinx3 326 1 / 80 / 924 2 6 24 26

483.xalancbmk 14191 1 / 38.58 / 3809 3057 4573 4342 4887

4.4. Evaluation 49

Table 4.1 provides detailed statistics for the SPEC CPU2006. We show how many

functions (#Fns) are present in the linked program just before the merging pass, as well

as the average, minimum, and maximum size of these functions, in number of instruc-

tions, at this same point in the compilation pipeline. We also report how many pair-

wise merge operations are performed by each one of the function merging techniques.

Note that in almost all cases FMSA performs significantly more merge operations than

the other techniques. There are only two cases where FMSA with exploration thresh-

old of one finds fewer profitable merges than the state-of-the-art. This is due to our

aggressive pruning of the search space with our ranking mechanism. Simply increas-

ing the threshold, e.g. to ten, allows FMSA to merge more functions. In any case,

these extra merge operations of the state-of-the-art have little effect on the overall code

size reduction. The state-of-the-art is more likely to fail to merge large functions and

succeed with small ones, so even when merging more functions, it does not reduce

code size as much as FMSA.

MiBench: Embedded Benchmark Suite

We have shown that our technique achieves good results when applied on the SPEC

CPU suite. It reduces size not only on templated C++ benchmarks, like other tech-

niques, but also on C benchmarks where merging opportunities should be almost non-

existant. Here, we further explore how FMSA handles such cases by applying it on

the MiBench suite, a collection of small C programs each one composed of a small

number of functions.

Figure 5.17 shows the object file reduction for the MiBench programs on the Intel

platform. Our best result is for the rijndael benchmark, which implements the well-

known AES encryption. FMSA merges the two largest functions, namely, encrypt

and decrypt. Inspecting the LLVM IR for the rijndael benchmark, we observe that

the two functions contain a total of 2494 instructions, over 70% of the code. When

we merge them by sequence alignment, we create a single function with only 1445

instruction, a 42% reduction in the number of IR instructions. This translates into a

20.6% reduction in the linked object file.

Table 5.1 provides more detailed statistics for MiBench. LLVM achieves very

limited results, reducing jpeg c by just 0.13%, jpeg d by 0.1%, and ghostscript

by 0.02%, while having no effect on typeset. This happens because all the functions

merged by LLVM’s identical technique are tiny functions relative to the overall size

of the program. Most of these functions comprise of just a few IR instructions. For

50 Chapter 4. Function Merging by Sequence Alignment

Table 4.2: Number and size of functions present in each MiBench benchmark just before

function merging, as well as number of merge operations applied by each technique.

Benchmarks #Fns Min/Avg/Max Size Identical SOA FMSA[t=1] FMSA[t=10]

CRC32 4 8 / 24.75 / 39 0 0 0 0

FFT 7 7 / 49.86 / 144 0 0 0 0

adpcm c 3 37 / 73 / 100 0 0 0 0

adpcm d 3 37 / 73 / 100 0 0 0 0

basicmath 5 4 / 70.8 / 232 0 0 0 0

bitcount 19 4 / 22.26 / 63 0 1 3 3

blowfish d 8 1 / 245.38 / 824 0 0 0 0

blowfish e 8 1 / 245.38 / 824 0 0 0 0

jpeg c 322 1 / 100.52 / 1269 2 6 8 11

jpeg d 310 1 / 98.93 / 1269 3 6 10 10

dijkstra 6 2 / 33 / 89 0 0 0 0

ghostscript 3446 1 / 54.2 / 4218 53 53 234 250

gsm 69 1 / 97.06 / 737 0 3 8 8

ispell 84 1 / 105.51 / 1082 0 2 5 5

patricia 5 1 / 77 / 167 0 0 0 0

pgp 310 1 / 88.52 / 1845 0 1 10 10

qsort 2 11 / 50 / 89 0 0 0 0

rijndael 7 46 / 472.29 / 1247 0 0 1 1

rsynth 46 1 / 97.28 / 778 0 0 0 0

sha 7 12 / 53.29 / 150 0 0 0 0

stringsearch 10 3 / 47.9 / 99 0 0 1 1

susan 19 15 / 291.84 / 1212 0 0 1 1

typeset 362 1 / 354.47 / 12125 1 4 31 35

example, in the typeset benchmark, while it is able to merge a pair of functions, they

only have five instructions. For the same benchmark, FMSA performs several merge

operations, one of them between two functions with over 500 instructions. Overall,

the state-of-the-art does slightly better than LLVM’s identical technique but even in its

best case it cannot reduce code size more than 0.7%.

Because these embedded benchmarks are much smaller than those in the SPEC

suite, trivially similar functions are much less frequent. This is why neither the state-

of-the-art nor LLVM’s identical function merging technique had any real effect on

these benchmarks. Our technique can look beyond trivially similar functions which

allowed it to achieve significant code size reduction on these real embedded bench-

marks.

4.4. Evaluation 51

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10] FMSA [oracle]

CRC32
FFT

adpcm_c

adpcm_d

basic
math

bitc
ount

blowfis
h_d

blowfis
h_e

cjpeg

dijk
str

a
djpeg

ghosts
crip

t
gsm

isp
ell

patri
cia pgp

qsort

rijn
dael

rsy
nth sha

str
ingsearch

susan

typeset
Mean

0

1

2

3

4

5

R
e
d

u
ct

io
n

 (
%

)

0
0.

1

1.
7
1.

7
1.

7
1.

7

20.6

Figure 4.11: Object file size reduction for Intel on the Mibench benchmark suite. Our

approach (FMSA) is the only one able to achieve a meaningful reduction on these

benchmarks.

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0

1

2

3

4

N
o
rm

a
li

ze
d

 T
im

e

1.
0 1.

0
1.

15
1.

471.
74

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10]

Figure 4.12: Compilation-time overhead on the Intel platform. For exhaustive explo-

ration (not shown) the average overhead is 25×. Through ranking, we reduce overhead

by orders of magnitude. For an exploration threshold of one, FMSA has an overhead of

only 15%.

4.4.3 Compilation Overhead

Figure 5.23 shows the compilation-time overhead for all optimisations. As explained in

the experimental setup, we only present results when compiling for the Intel platform.

Since we cross-compile on the same machine for both targets, compilation times are

very similar. We also do not include results for the oracle (exhaustive) exploration. It

would be hard to visualise it in the same plot as the other configurations, since it can

be up to 136× slower than the baseline.

Unlike the other evaluated techniques, our optimisation is a prototype implemen-

tation, not yet tuned for compilation-time. We believe that compilation-time can be

further reduced with some additional engineering effort. Nevertheless, by using our

ranking infrastructure to target only the single most promising equivalent function for

each function we examine, we reduce compilation-time overhead by up to two orders

of magnitude compared to the oracle. This brings the average compile-time overhead

to only 15% compared to the baseline, while still reducing code size almost as well

52 Chapter 4. Function Merging by Sequence Alignment

as the oracle. Depending on the acceptable trade-off between compilation-time over-

head and code size, the developer can change the exploration threshold to exploit more

opportunities for code reduction, or to accelerate compilation.

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

Mean

20

40

60

80

100

C
o
m

p
il

a
ti

o
n

T
im

e
 (

%
)

Fingerprinting

Ranking

Linearization

Alignment

Code-Gen

Updating Calls

Figure 4.13: A compilation-time breakdown isolating the percentage for each major step

of the optimisation (t=1).

Identical SOA FMSA [t=1] FMSA [t=5] FMSA [t=10]

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
Mean

0.8

0.9

1.0

1.1

1.2

N
o
rm

a
li

ze
d

 R
u

n
ti

m
e

1.
0 1.

0 1.
021.

03
1.

03

Figure 4.14: Runtime overhead on the Intel platform. Performance impact is almost

always statistically insignificant. For the few benchmarks affected, FMSA merges hot

functions.

Figure 4.13 shows a detailed compilation-time breakdown. For each major step

of the proposed optimisation, we present the accumulated time spent across the whole

program. To better understand the overhead of each step, we use an exploration thresh-

old of one (t = 1). Because the ranking mechanism performs a quadratic operation

on the number of functions, computing the similarity between all pairs of functions,

it is expected that ranking would be amongst the most costly steps. However, it is

interesting to notice that the sequence alignment dominates most of the compilation-

time overhead, especially considering that this operation is performed only once per

function, when t = 1. Although this operation is linear in the number of functions,

the Needleman-Wunsch algorithm [57] is quadratic in the size of the functions being

4.5. Conclusion 53

aligned, both in time and space. Unsurprisingly, code generation is the third most

costly step, which also includes the time to optimise the merge of the parameters. The

remaining steps contribute, in total, a small percentage of all the compilation-time

overhead. This analysis suggests that optimising the sequence alignment algorithm

and the ranking mechanism is key to reducing even further the overall compilation-

time overhead.

4.4.4 Performance Impact

The primary goal of function merging is to reduce code size. Nevertheless, it is also

important to understand its impact on the programs’ execution time and the trade-

offs between performance and code size reduction. Figure 4.14 shows the normalised

execution time. Overall, our optimisation has an average impact of about 3% on pro-

grams’ runtime. For most benchmarks, there is no statistically significant difference

between the baseline and the optimised binary. Only for 433.milc, 447.dealII, and

464.h264ref there is a noticeable performance impact.

We take 433.milc, which has the worst result, for discussion. For an exploration

threshold value of one, we merge 58 functions. Through profiling, we discovered that

a handful of them contain hot code, that is, they have basic blocks that are frequently

executed. If we prevent these hot functions from merging, all performance impact

is removed while still reducing code size. Specifically, our original results showed

a 5.11% code size reduction and an 18% performance overhead. Avoiding merging

hot functions results in effectively non-existent performance impact and a code size

reduction of 2.09%. This code size reduction is still about twice as good as the state-

of-the-art. As with the compilation overhead, this is a trade-off that the developer can

control.

4.5 Conclusion

We introduced a novel technique, based on sequence alignment, for reducing code size

by merging arbitrary functions. Our approach does not suffer from any of the major

limitations of existing solutions, outperforming them by more than 2.4×. We also

proposed a ranking-based exploration mechanism to focus the optimisation on promis-

ing pairs of functions. Ranking reduces the compilation-time overhead by orders of

magnitude compared to an exhaustive quadratic exploration. With this framework, our

54 Chapter 4. Function Merging by Sequence Alignment

optimisation is able to reduce code size by up to 25%, with an overall average of about

6%, while introducing an average compilation-time overhead of only 15%. Coupled

with profiling information, our optimisation introduces no statistically significant im-

pact on performance.

Chapter 5

Effective Function Merging in the SSA

Form

While the technique proposed in Chapter 4 represents a leap forward, experiments

show that FMSA fails to reduce code size in some cases where it would be intuitively

expected to work. Even when handling similar functions that should be profitably

merged, this algorithm may fail spectacularly, producing a merged function larger

than the combined input functions.

Closer inspection reveals that the problem stems from the inability of this approach

to handle phi-nodes. In SSA, phi-nodes merge the assignments of a single variable

that arrive from different control flow paths. As such, they are closely tied to how

control and data flow across basic blocks and cannot be merged without examining

their control flow context. FMSA generates code directly from the aligned sequences,

where control flow information has been lost, merging instructions blindly with little

to no consideration for their context, so it cannot handle phi-nodes. It overcomes this

hurdle by applying register demotion, which replaces phi-nodes with stack variables.

This works but only by artificially increasing the size of the input functions, often by

twice or more their original size, the exact opposite of what function merging tries to

achieve. A final post-merging step of register promotion is supposed to reverse this

code bloating but it often fails, leading to unprofitable merged functions.

Our idea is to keep the one thing that works well in FMSA, the idea of using

sequence alignment on functions, and build around it a new function merging method-

ology that can handle directly control and data flow with no need for register demotion.

Our proposed approach, SalSSA, achieves this with a new code generator for aligned

functions. Instead of translating the alignment directly into a merged function, our

55

56 Chapter 5. Effective Function Merging in the SSA Form

approach generates code from the input control-flow graphs, using the alignment only

to specify pairs of matching labels and instructions. The generator then produces code

top-down, starting with the control flow graph of the merged function, then populating

with instructions, arguments and labels, and finally with phi-nodes which maintain the

correct flow of data. SalSSA is carefully designed to produce correct but, still, succinct

code. A final post-generator stage applies a novel optimisation, phi-node coalescing,

that eliminates superfluous phi-nodes and select instructions, reducing even further the

code size.

SalSSA produces functions much smaller than those produced by FMSA. In many

cases, it produces profitable merged functions where FMSA fails. On average, it re-

duces about twice as much code as their approach, 11.4% to 14.5% compared to 5.6%

to 6.2% depending on the function merging configuration. On top of that, the compile-

time overhead is much lower. Sequence alignment has a quadratic relationship with

function size, while the overhead of code generation and later optimisation passes is

proportional to function size. By avoiding register demotion, we keep input function

sequences smaller and we produce smaller functions, leading to an average compila-

tion overhead of 5%, 3× less than FMSA, and an overhead in no case more than 55%,

compared to the maximum overhead of 314% for FMSA. Similarly, SalSSA uses half

the amount of memory required on average by FMSA during compilation.

With this chapter, we make the following contributions:

• The first approach that fully supports the SSA form when merging functions

through sequence alignment.

• A novel optimisation called phi-node coalescing that reduces the number of phi-

nodes and selections in merged functions.

• SalSSA achieves about twice as much code size reduction than the state of the

art with significantly lower compilation time overheads.

5.1 Motivating Example

As a motivating example, consider the pair of input functions shown in Figure 5.1.

While they are artificial, they highlight and isolate a problem that frequently appears

in real programs, as we discuss later in Figure 5.4. These two functions have enough

similarity to be profitably merged. A human expert could even replace them with the

function shown in Figure 5.2, reducing the number of instructions by about 20%.

5.1. Motivating Example 57

F1 F2

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%x1)

L4
%x5 = phi [%x3,L2],[%x4,L3]

%x2 = cmp lt %x1, 0

%x6 = call end(%x5)

 Mergeable Non-Mergeable

br %x2, L2, L3

L3

br L4

%x4 = call other(%x1)

ret %x6

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %v2, 0

br L2

%v2 = phi [%v1,L1],[%v4,L3]

L3

br L2

%v4 = call body(%v2)

L4
%v5 = call end(%v2)
ret %v5

Figure 5.1: Original input functions to be merged, before register demotion. These

simplified functions highlight a problem commonly seen in real programs.

However, before aligning and automatically merging them, FMSA has to apply

register demotion, as shown in Figure 5.3. Phi-nodes are removed and memory op-

erations are created to propagate values across basic block boundaries. The sequence

alignment algorithm then identifies the matching pairs of instructions (connected green

marks), keeping the rest unaligned (in red).

The problem arises when merging some of the generated memory operations. To

reverse the effect of register demotion, FMSA applies register promotion on the merged

code, replacing the memory operations back with phi-nodes. This is mandatory in

FMSA in order for merged functions to be profitable, given that register demotions

artificially increases the size of the functions being merged. However, in order to be

promotable, a stack location must be always used directly as the immediate argument

of the operations that access the location. Unfortunately, merging these instructions

tend to prohibit register promotion, which results in unprofitable merge operations.

In our example, we see in Figure 5.3 that some of the mergeable memory operations

use different locations. One such case is the highlighted pair of store instructions. To

maintain the semantics of the two functions after merging, the target address of the

merged store will have to be selected based on the function identifier, either addr2 or

addr3. Because the merged store instruction will not use the stack address directly,

but instead a selected address, this prevents register promotion from eliminating these

58 Chapter 5. Effective Function Merging in the SSA Form

memory operations.

%w1 = call start(%n)

L1

br %fid==1, L2, L3

L2

br %w3, L4, L6

%w3 = cmp ne %w2, 0

%w2 = phi [%w1,L1],[%v4,L3]

L4

br %fid==1, L2, L6

%w5 = phi [%w2,L2],[%w1,L3]

%w6 = call body(%w5)

L6
%w8 = phi [%w2,L2],[%w6,L4],[%w7,L5]
%w9 = call end(%w8)
ret %w9

L5

br L4

%w7 = call other(%w1)

L3
%w4 = cmp lt %w1, 0

br %w4, L4, L5

T

F

F T

Figure 5.2: Desired merged function that can be produced by an expert. An extra

argument called %fid is used to select between the two functions. This represents a

gain of about 20% in the total number of instructions.

This failure to remove temporarily inserted stack operations has knock-on effects

beyond the few extra instructions left in the merged code. The additional memory

accesses and the select statements controlling their target locations prohibit parts of

the post-merge cleanup and later optimisation passes. In our example, while the two

original input functions had nine and ten instructions each, the merged function ends

up with a total of 50 instructions, significantly larger than the two input functions put

together.

This kind of undesired scenario is likely to happen when merging two distinct func-

tions after register demotion simply due to the sheer number of memory operations it

creates. Figure 5.4 shows the average normalised size, before and after register demo-

tion, across all functions in each program from the SPEC CPU2006 benchmark suite.

Size refers to the number of LLVM IR instructions. On average, register demotion

increases function size by almost 75%, often by twice or more their original size. Even

if FMSA fails to eliminate only a small portion of these extra instructions, the negative

impact on the profitability of merging will be significant.

Even for cases where the merge operation is profitable, register demotion remains

a problem. Demotion artificially lengthens the functions to be aligned which in turns

5.1. Motivating Example 59

exacerbates the compile-time overheads associated with function merging. In our ex-

ample, the combined size of the two input functions more than doubles, from 14 in-

structions in Figure 5.1 to 29 instructions in Figure 5.3. This increase is in line with

what we have seen in SPEC CPU2006, including functions with many thousands of

instructions. Regardless of whether register promotion will eventually remove the ex-

tra instructions or not, the alignment algorithm itself will have to process sequences

twice as long. Since the memory usage and running time of the algorithm is quadratic

in the sequence length, register demotion slows it down approximately by a factor of

four. For applications with large functions after register demotion, the compile-time

and memory usage overheads become prohibitive.

 Mergeable

Non-Mergeable

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%t2)

%x2 = cmp lt %t1, 0

br %x2, L2, L3

L3

br L4

%x4 = call other(%t4)

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %t3, 0

br L2

L3

br L2

%v4 = call body(%t4)

L4

%addr1 = alloca i32
%addr2 = alloca i32
%addr3 = alloca i32
%addr4 = alloca i32

store %v1, %addr3
%t1 = load %addr3
store %t1, %addr4

%t2 = load %addr4
store %t2 %addr2
%t3 = load %addr2

%t4 = load %addr2

store %v4, %addr1
%t5 = load %addr1
store %t5, %addr4

%v5 = call end(%t6)
ret %v5

%t6 = load %addr4

%addr1 = alloca i32
%addr2 = alloca i32
%addr3 = alloca i32
%addr4 = alloca i32

store %v1, %addr3
%t1 = load %addr3

%t2 = load %addr3

store %x3, %addr2
%t3 = load %addr2
store %t3, %addr4

%t4 = load %addr3

store %x4, %addr1
%t4 = load %addr1
store %t4, %addr4

L4

%x6 = call end(%t5)
ret %x6

%t5 = load %addr4

F1 F2

P
r
e
v
e
n
t
s

P
r
o
m
o
t
i
o
n

Figure 5.3: Aligned example functions after register demotion. The functions double

in size after demotion, slowing down alignment. Merging some of the generated stack

accesses will prevent eliminating them later through register promotion.

This shows that a new solution is needed to effectively merge functions in the

SSA form. Register demotion makes function merging less profitable, even stopping

60 Chapter 5. Effective Function Merging in the SSA Form

similar functions from merging altogether, and often leads to undesirable compilation

overheads. In the rest of the chapter, we show that register demotion is not required for

function merging and that we can directly handle phi-nodes, leading to more profitably

merged functions.

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li

ze
d

 S
iz

e 1.73

G
M

e
a
n

Figure 5.4: Average normalised function size, before and after register demotion, across

all functions in each program from the SPEC 2006 benchmark suite. Register demotion

increases function size by almost 75% on average.

5.2 The SalSSA Approach

Properly handling phi-nodes requires a radical redesign in the code generator. The

existing code generator produces code directly from the aligned sequence, with each

instruction pair treated almost in isolation without considering any control flow con-

text. Merging phi-nodes cannot work with this approach because phi-nodes are only

understood in their control flow context.

Road map In the rest of this section, we describe SalSSA, our novel approach for

merging functions through sequence alignment with full support for the SSA form. By

removing the need for preprocessing the input functions and performing register de-

moting, our approach is able to merge functions better and faster. Instead of translating

the aligned functions directly to merged code, the SalSSA follows a top-down approach

centred on the CFGs of the input functions. It iterates over the input CFGs, construct-

ing the CFG of the merged function, interweaving matching and non-matching in-

structions (Section 5.2.1). Afterwards, all edges and operands are resolved, including

appropriately assigning the incoming values to all phi-nodes (Section 5.2.2). SalSSA

5.2. The SalSSA Approach 61

is designed to preserve all properties of SSA form via the standard SSA construc-

tion algorithm (Sections 5.2.3). Finally, SalSSA integrates a novel optimisation with

the SSA construction algorithm, called phi-node coalescing, producing even smaller

merged functions (Section 5.2.4).

F1 F2

%x1 = call start(%n)

L1

L2

br L4

%x3 = call body(%x1)

L4
%x5 = phi [%x3,L2],[%x4,L3]

%x2 = cmp lt %x1, 0

%x6 = call end(%x5)

br %x2, L2, L3

L3

br L4

%x4 = call other(%x1)

ret %x6

%v1 = call start(%n)

L1

L2

br %v3, L3, L4

%v3 = cmp ne %v2, 0

br L2

%v2 = phi [%v1,L1],[%v4,L3]

L3

br L2

%v4 = call body(%v2)

L4
%v5 = call end(%v2)
ret %v5

 Mergeable

Non-Mergeable

Figure 5.5: Example functions aligned without register demotion. Phi-nodes are ex-

cluded from alignment.

Working examples Figure 5.5 shows how the functions from our motivating exam-

ple align without register demotion. Here, phi-nodes are not aligned, similarly to how

FMSA handles landing-pad instructions. We will use these as working examples to

describe step by step how our new code generator works in the next subsections.

5.2.1 Control-Flow Graph Generation

Our code generator starts by producing all the basic blocks of the merged function.

Each original block is broken into smaller ones so that matching code is separated from

non-matching code and matching instructions and labels are placed into their own basic

blocks. Having one block per matching instruction or label makes it easier to handle

control flow and preserve the ordering of instructions from the original functions by

chaining these basic blocks as needed.

Blocks with instructions that come originally from the same basic block (of either

input function) are chained in their original order with branches. We use either un-

62 Chapter 5. Effective Function Merging in the SSA Form

conditional branches or conditional branches on the function identifier depending on

whether control flow out of this code is different for the two input functions. Because

we have one basic block per pair of matching instructions/labels, this tends to generate

some artificial branches, most of them are unconditional, but can be simplified in later

stages.

 %m1 = call start(%n)

L2

br L2

L1

br %fid==1, L11, L21

 br L2

L11

L21
%x2 = cmp slt %m1, 0

L12

%v3 = cmp ne %v2, 0

%v2 = phi [%m1,L11],[%m2,L5]

br L4

L3

 %m2 = call body(%v2|%m1)

L4

br L5

br L12|L6

L5

br L6

L22
%x4 = call other(%m1)

br L7

L6

 %m3 = call end(%v2|%x5)

L7

br L8

ret m3

L8

%x5 = phi [%m2,L5],[%x4,L22]
%x5 from F2

F2:L1

F2:L1

F2:L1F1:L1

F1:L1

F1:L1

F1:L2

F2:L2 F2:L3

F2:L2

F1:L3

F1:L3

F2:L2F1:L3

F1:L4

F1:L4

F1:L4

F2:L4

F2:L4

F2:L4

br %v3, L3, L6

br %x2, L3, L22

Figure 5.6: Merged CFG produced by SalSSA. Code corresponding to a single in-

put basic block may be transformed into a chain of blocks, separating matching and

non-matching code. The generator inserts conditional and unconditional branches

to maintain the same order of instructions from the input basic block. Operands and

edges highlighted in blue will be resolved by the operand assignment described in Sec-

tion 5.2.2.

Figure 5.6 shows the generated CFG. At this point, the only instructions that actu-

ally have their operands assigned are the branches inserted to chain instructions orig-

inating from the same input basic block. These branches have no corresponding in-

5.2. The SalSSA Approach 63

struction in the input functions. All other operands and edges, depicted in blue in

Figure 5.6, will be resolved later, during operand assignment.

5.2.1.1 Phi-Node Generation

Our code generator treats phi-nodes differently from other instructions. For all align-

ment and code generation purposes, SalSSA treats phi-nodes as attached to their basic

block’s label; that is, they are aligned with their labels and are copied to the merged

function with their labels. So, when creating a basic block for a label, we also generate

the phi-nodes associated with it. For a pair of matching labels, we copy all phi-nodes

associated with both labels. We have decided for this approach where phi-nodes are

tied to labels because phi-nodes describe primarily how data flows into its correspond-

ing basic block. Figure 5.6 shows an example where phi-nodes are present in basic

blocks with both matching or non-matching labels. The phi-node x5 is simply copied

into the merged basic block labelled L6.

Unlike other instructions, we do not merge phi-nodes through sequence alignment.

Instead, identical phi-nodes are merged during the simplification process using existing

optimisations from LLVM.

5.2.1.2 Value Tracking

While generating the basic blocks and instructions for the merged function, SalSSA

keeps track of two mappings that will be needed during operand assignment. The first

one, called value mapping, is responsible for mapping labels and instructions from the

input functions into their corresponding ones in the merged function. This is essential

for correctly mapping the operand values. The second one, called block mapping, is

a mapping of the basic blocks in the opposite direction, as shown by the light gray

labels in Figure 5.6. It maps basic blocks in the merged function to a basic block in

each input functions, whenever there is a corresponding one. This block mapping will

be needed to map control flow when assigning the incoming values of phi-nodes (see

Section 5.2.2.3).

5.2.2 Operand Assignment

Once all instructions and basic blocks have been created, we perform operand assign-

ment in two phases. First, we assign all label operands, essentially resolving the re-

maining edges in the control flow graph (dashed blue edges in Figure 5.6). With the

64 Chapter 5. Effective Function Merging in the SSA Form

control flow graph complete, we can then create a dominator tree to help us assign the

remaining operands while also properly handling instruction domination.

%m2 = call body(%v2|%m1)

%s = select %fid==1, %v2, %m1
%m2 = call body(%s)

Figure 5.7: Operand selection for the call instruction in L4 from Figure 5.6. Mismatch-

ing operands chosen with a select instruction on the function identifier.

Whenever the corresponding operands of merged instructions are different, we

need a way to select the correct operand based on the function identifier. Section 5.2.2.1

describes how we perform label selection. In all other cases, we simply use a select

instruction, as shown in Figure 5.7.

%s = select %fid==1, %a2, %b1
%y = add %m, %s

%y = add %m|%b1, %a2|%m

swap

Figure 5.8: Optimizing operand assignment for commutative instructions. Example of a

merged add instruction that can have its operands reordered to allow merging the two

uses of %m, avoiding a select instruction.

When assigning operands to commutative instructions, we also perform operand

reordering to maximise the number of matching operands and reduce the need for se-

lect instructions. Figure 5.8 shows an example of a commutative instruction where an

operand selection can be avoided by reordering operands. This property of commuta-

tive operations has been exploited before by other optimisations [61, 62, 63].

5.2.2.1 Label Selection

In LLVM, labels are used exclusively to represent control flow. More specifically, label

operands are used by terminator instructions, where they specify the destination basic

block of a control flow transfer, or to represent incoming control flow in a phi-node

instruction.

Whenever assigning the operands of a merged terminator instruction, if there is

a label mismatch between the two input functions, we need a way to select between

5.2. The SalSSA Approach 65

the two labels depending on the executed function. We do so by creating a new basic

block with a conditional branch on the function identifier to each one of the mapped

labels. Then we use the new block’s label as the operand of the merged terminator

instruction. Figure 5.9 illustrates a CFG that handles label selection for a merged

terminator instruction.

br L12|L6

br %fid==1, L12, L6

Lsel

br Lsel

L5

L12 L6

Figure 5.9: Label selection for mismatched terminator instruction operands Lf1 and Lf2

corresponding to labels of two different basic blocks. We handle control flow in a new

basic block, Lsel with a conditional branch on the function identifier targeting the two

labels. We use the label of the new block as the merged terminator operand.

Figure 5.10 shows a special case where we can also perform operand reordering

on conditional branches that follow a specific pattern. When merging two conditional

branches with matching label operands, except for their order, instead of creating two

label selections, we can simply apply an xor operation on the condition and the func-

tion identifier, swaping the label operands for the true-value of the function identifier.

As shown in Figure 5.10b, the xor operation flips the value of the condition for the

true-value of the function identifier, preserving the semantic of the conditional branch.

This optimisation adds the cost of one xor operation to avoid the cost of two label

selections, which are implemented with branch instructions as shown in Figure 5.9.

5.2.2.2 Landing Blocks

Most modern compilers, including GCC and LLVM, implement the zero-cost Itanium

ABI for exception handling [17], which is known as the landing-pad model. This

model has two main components: (1) invoke instructions that have two successors,

one that continues when the call succeeds as per normal, and another, usually called

the landing pad, in case the call raises an exception, either by a throw or the unwinding

of a throw; (2) landing-pad instructions that encode which action is taken when an

exception is raised. A landing pad must be the immediate successor of an invoke

66 Chapter 5. Effective Function Merging in the SSA Form

(a) Rule for conditional branches with

swapped label operands.
(b) The truth table of the xor operation.

Figure 5.10: Optimizing label assignment for conditional branches. Example of a

merged br instruction that can have its label operands reordered, trading two label

selections by one xor operation.

br Ldst

invoke F(...), Lc, Lpad

Lsrc

Ldst

Lpad
landingpad ...Lc

invoke F(...), Lc, Ldst

Figure 5.11: Landing blocks are added after operand assignment and are assigned to

invoke instructions as operands.

instruction in its unwinding path. The code generator must ensure that this model is

preserved.

Our new code generator delays the creation of landing-pad instruction until the

phase of operand assignment. Once we have concluded the remapping of all label

operands of an invoke instruction, regardless of whether they are merged or non-

merged code, we create an intermediate basic block with the appropriate landing-pad

instruction. Then we assign the label of this landing block as the operand of the invoke

instruction, as shown in Figure 5.11.

5.2.2.3 Phi-Node’s Incoming Values

There are two distinct cases for phi-nodes: being associated with a matching or with a

non-matching label. In both cases, phi-nodes are only copied from their input functions

and they are not merged. So each phi-node in the merged function should capture the

incoming flows present in the corresponding phi-node of their input function. For

5.2. The SalSSA Approach 67

L4
%s = select %fid==1, %v2, %m1
%m2 = call body(%s)

L21

L12
%v2 = ...

L3
br L4

(a) Example where the dominance property

is violated.

L4
%s = select %fid==1, %vm, %m1
%m2 = call body(%s)

L21

L12
%v2 = ...

L3

br L4

%vm = phi [%v2,L12],[undef,L21]

(b) The dominance property is restored by

placing phi-nodes where needed.

Figure 5.12: Example of how SalSSA uses the standard SSA construction algorithm to

guarantee the dominance property of the SSA form.

matching labels, each phi-node in the merged function will have additional incoming

flows specific to the other input function but these flows should have undefined values.

To assign the incoming values of a phi-node, SalSSA iterates over all predecessors

of its parent basic block and uses the block mapping to discover each predecessor’s

corresponding basic block in the input function. If such a basic block is found, then

SalSSA obtains the incoming value associated with that predecessor from the value

mapping. Otherwise, an undefined value, which by construction should never be actu-

ally used, is associated with that predecessor.

5.2.3 Preserving the Dominance Property

The code transformation process described so far could violate the dominance property

of the SSA form. This property states that each use of a value must be dominated by its

definition. For example, an instruction (or basic block) dominates another if and only

if every path from the entry of the function to the latter goes through the former. Fig-

ure 5.12a gives one example extracted from Figure 5.6 where the dominance property

is violated during code transformation. For this example, the dominance property is

violated because %v2 is defined in block L12 and used in block L4, but the former does

not dominate the latter since there is a alternative path through L21.

SalSSA is designed to preserve the dominance property to conform with the SSA

form. It achieves this using a two-step approach. It first adds a pseudo-definition

at the entry block of the function where names are defined and initialised with an

undefined value. This guarantees that every register name will be defined on basic

68 Chapter 5. Effective Function Merging in the SSA Form

Lmerged

%s = select %fid==1, %vm, %xm
... = ... %s

Lf2Lf1
%v = ... %x = ...

%vm = phi [%v,Lf1],[undef,Lf2]
%xm = phi [undef,Lf1],[%x,Lf2]

(a) Phi-node placement without coalescing.

Lmerged

... = ... %s

Lf2Lf1
%v = ... %x = ...

%s = phi [%v,Lf1],[%x,Lf2]

(b) Phi-node placement with coalescing.

Figure 5.13: Phi-node coalescing reduces the number of phi-nodes and selections.

blocks from both functions. Then, SalSSA applies the standard SSA construction al-

gorithm [14, 15], which guarantees both the dominance and the single-reaching defi-

nition properties of the SSA form. We note that our implementation uses the standard

SSA construction algorithm provided by LLVM for register promotion. This algo-

rithm guarantees that names have a single definition by placing extra phi-nodes where

needed so that instructions can be renamed appropriately. Figure 5.12b shows how the

property violation in Figure 5.12a can be corrected using this strategy.

5.2.4 Phi-Node Coalescing

The approach described in Section 5.2.3 guarantees the correctness of the SSA form

but generates extra phi-nodes and registers which increase register pressure and might

lead to more spill code. In this section, we describe a novel optimisation technique,

phi-node coalescing, that SalSSA uses to lower register pressure.

Figure 5.13 illustrates such an optimisation opportunity. SalSSA is merging an in-

struction with different arguments, so it needs to select the right one based on the func-

tion identifier. The two arguments though, v and x, have disjoint definitions, i.e. they

have non-merged definitions from different input functions. Using the standard SSA

construction algorithm would result in the sub-optimal code shown in Figure 5.13a.

This code inserts two trivial phi-nodes to select, again, v or x based on the executed

function. SalSSA optimises this code by coalescing both phi-nodes into a single one

and removing the selection statement. As shown in Figure 5.13b, the optimised version

has a smaller number of instructions and phi-nodes.

This transformation is valid because a value definition that is exclusive to a func-

tion will never be used when executing the other function. Figure 5.14 shows another

5.3. Evaluation 69

Lmerged

Lf11
%v = ...

Lf21
%x = ...

%vm = phi [%v,Lf1],[undef,Lf2]
%xm = phi [undef,Lf1],[%x,Lf2]

Lf22
... = ... %xm

Lf12
... = ... %vm

... = select %fid==1, %vm, 0

... = select %fid==1, 0, %xm
br %fid==1, Lf12, Lf22

(a) Phi-node placement without coalescing.

Lmerged

Lf11
%v = ...

Lf21
%x = ...

Lf22
... = ... %vx

Lf12
... = ... %vx

%vx = phi [%v,Lf1],[%x,Lf2]
... = select %fid==1, %vx, 0
... = select %fid==1, 0, %vx
br %fid==1, Lf12, Lf22

(b) Phi-node placement with coalescing.

Figure 5.14: Reducing the number of phi-nodes by coalescing disjoint definitions with

no user instructions in common.

example illustrating that even disjoint definitions that have no user instructions in com-

mon can be coalesced, reducing the number of phi-nodes.

Since SalSSA is aware of which basic blocks are exclusive to each function, it can

choose a pair of disjoint definitions for coalescing. Given a pair of disjoint definitions,

SalSSA assigns the same name for both of them before applying the SSA reconstruc-

tion. SalSSA coalesces the set of definitions that violate the dominance property. Two

definitions can be paired for coalescing if they are disjoint and have the same type. The

optimisation pairs disjoint definitions that maximise their live range overlap since the

goal is to avoid having register names live longer than they should, reducing register

pressure.

Formally, the heuristic implemented in our phi-node coalescing can be described

as follows. Given a set S1×S2 of disjoint definitions that violate the dominance prop-

erty, the optimisation chooses pairs (d1,d2) ∈ S1× S2 that maximise the intersection

UB(d1)∩UB(d2), where UB(d) is the set {Block(u) : u ∈Users(d)}.
Phi-node coalescing allows SalSSA to produce smaller merged functions and re-

duce code size. Consequently, it also enables more functions to be profitably merged.

5.3 Evaluation

In this section, we compare SalSSA against the function merging by sequence align-

ment, FMSA, introduced in Chapter 4. We first present the code size reduction on the

70 Chapter 5. Effective Function Merging in the SSA Form

.c

.c

.c

...

opt

...

FE
FE

FE

opt

opt

link optFM BE .o

 Function
Merging

LTO

IR

} Back
End

Front
End

...

Object
ELF
File

Source
Files

SalSSA/FMSA

Figure 5.15: Compilation pipeline used for the evaluation. Both SalSSA and FMSA are

applied in LTO mode.

final object file. We then evaluate the compilation overhead and impact on program

performance.

5.3.1 Experimental Setup

Most of our experiments directly compare SalSSA against FMSA [63]. We use the

same compilation pipeline as our prior work [63], depicted in Figure 5.15. Both func-

tion merging optimisations are implemented in LLVM version 11.

Our approach uses the same fingerprint-based ranking mechanism as FMSA to

decide which functions to attempt to merge. This strategy uses a configurable explo-

ration threshold, t, to control how many different functions to attempt to merge with

each function before selecting the most profitable merge or give up. A larger explo-

ration threshold (t) is likely to lead to better code size reduction, but comes at the cost

of longer compile time. Like FMSA, we also use three different exploration thresholds

where t = {1,5,10}.
We evaluated SalSSA and FMSA on all C/C++ benchmarks of the SPEC CPU

benchmark suite [69], both the 2006 and 2017 versions, targeting the Intel x86 archi-

tecture, and on the MiBench embedded benchmark suite targeting the ARM Thumb

architecture. We run all experiments on a dedicated server with a quad-core Intel Xeon

CPU E5-2650, 64 GiB of RAM, running Ubuntu 18.04.3 LTS. To minimise the effect

of measurement noise, compilation and runtime overhead experiments were repeated

5 times.

5.3.2 Evaluation on SPEC CPU

Figures 5.16 reports the code size reduction on linked objects over the LLVM link-time

optimiser (LTO). SalSSA significantly improves FMSA. With the lowest exploration

threshold, SalSSA on average reduces the compiled code size by 9.3% and 7.9% on

5.3. Evaluation 71

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk

GMean
0

10

20

30

40

R
e
d

u
ct

io
n

 (
%

)

3
.8 3
.9 3
.9

9
.3 9
.7

9
.5

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

Intel x86

(a) Results on SPEC CPU 2006.

508.namd_r

510.parest_
r

511.povray_r

526.blender_r

600.perlb
ench_s

602.gcc_s

605.m
cf_s

619.lb
m_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsje
ng_s

638.im
agick_s

641.le
ela_s

644.nab_s

657.xz_s

GMean

10

0

10

20

30

40

R
e
d

u
ct

io
n

 (
%

)

4
.1 4
.4 4
.4 7

.9 8
.8 9
.2

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

Intel x86

(b) Results on SPEC CPU 2017.

Figure 5.16: Linked object size reduction over LLVM LTO when performing function

merging with SalSSA or FMSA on SPEC CPU 2006 (a) and 2007 (b). Each ap-

proach was evaluated using three different exploration thresholds. On SPEC CPU2006,

SalSSA reduces code size by 9.3% to 9.7% on average, almost twice as much as

FMSA. On SPEC CPU2017, SalSSA reduces code size by 7.9% to 9.2% on average,

more than twice as much as FMSA.

SPEC CPU2006 and CPU2017 respectively. These translate to nearly twice or above

as much as FMSA, which achieves a 3.8% and 4.1% reduction on SPEC CPU2006

and CPU2017 respectively. The highest reductions are seen for 447.dealII and

510.parset r, over 40% reduction. They are mainly due to the heavy use of tem-

plate functions which leads to multiple similar functions. Other C++ programs dis-

play similar behavior, where SalSSA also achieves good code size reduction. SalSSA

also gives remarkable code size reduction in many C programs, such as 456.hmmer,

462.libquantum, and 482.sphinx3.

SalSSA outperforms FMSA for multiple benchmarks. The more pronounced cases

are for 444.namd, 456.hmmer, 462.libquantum, 447.dealII, and 482.sphinx3

from SPEC CPU2006, as well as 508.namd r, 619.lbm s, 644.leela s and 657.xz s

from SPEC CPU2017. These benchmarks were heavily affected by register demotion,

as illustrated in Figure 5.4 for SPEC CPU2006. Similar to our motivating example in

Section 6.1, when two non-identical functions have stack operations for nearly half of

72 Chapter 5. Effective Function Merging in the SSA Form

their instructions, misalignments become likely; these misalignments prohibit elimi-

nating the merged stack operation through register promotion. This issue reduces the

profit gained by FMSA. In some cases, like 619.lbm s and 625.x264 s, the profitabil-

ity cost model can fail, resulting in sufficient false positives to cause code bloating. We

will discuss this further in the next section.

5.3.3 Evaluation on MiBench

To evaluate the effectiveness of SalSSA on embedded systems, we apply it to the

MiBench embedded benchmark suite on the ARM Thumb architecture. We note that

by having function merging implemented at the IR level, our approach can be equally

applied to any target architecture supported by the compiler.

The MiBench suite is a collection of short C programs, each one composed of

a small number of functions. When optimizing programs with a small number of

functions, function merging optimisations will have fewer opportunities to find pairs

of profitably merged functions. For example, the qsort program in MiBench has only

two functions; as a result, neither FMSA nor SalSSA is able to merge them. As shown

in Table 5.1, the same happens for other programs in the MiBench suite.

Figure 5.17 shows that SalSSA improves significantly over FMSA, achieving a

geo-mean reduction of 1.4% to 1.6%, about twice as much as FMSA. This improve-

ment comes from SalSSA’s capability of generating better-merged functions, which

leads to a larger number of profitable merge operations, as confirmed by Table 5.1.

Because FMSA requires register demotion to be applied to all functions before it

can even attempt to merge them, FMSA ends up changing all functions even if no

profitable merge operation is found. Figure 5.17 shows the effect of this preprocessing

phase (denoted as FMSA Residue), which is obtained by running FMSA but not com-

mitting any merge operation. This FMSA Residue is the reason why FMSA sometimes

has a non-zero code-size reduction (e.g., adpcm c, FFT, patricia) despite not merg-

ing any functions. Since FMSA Residue might have an impact on the heuristics of

later optimisations and code generation, its impact is almost random, sometimes being

positive or negative on code-size. The impact of FMSA Residue is more noticeable

in small programs, such as those found in MiBench, while in SPEC2006 it increases

code size by only 0.02%, on average. To fix the issue highlighted by FMSA Residue,

we would need to add an extra bookkeeping step of cloning all original functions so

that we can rollback if they are not profitably merged. Fixing that would only increase

5.3. Evaluation 73

Table 5.1: Number and size of functions present in each MiBench benchmark just before

function merging, as well as number of merge operations applied by each technique.

Benchmarks #Fns Min/Avg/Max Size FMSA[t=1] SalSSA[t=1]

CRC32 4 8/23.75/37 0 0

FFT 7 6/45.43/131 0 0

adpcm c 3 35/68.33/93 0 0

adpcm d 3 35/68.33/93 0 0

basicmath 5 4/60/204 0 0

bitcount 19 4/20.58/56 3 3

blowfish d 8 1/231.38/790 0 1

blowfish e 8 1/231.38/790 0 1

cjpeg 322 1/92.76/1198 7 26

dijkstra 6 2/31.5/83 0 0

djpeg 310 1/91.31/1198 10 28

ghostscript 3452 1/50.36/3749 211 327

gsm 69 1/92.42/696 6 9

ispell 84 1/97.08/1004 3 8

patricia 5 1/73.6/160 0 0

pgp 310 1/80.39/1706 8 19

qsort 2 11/45.5/80 0 0

rijndael 7 45/444.14/1182 1 1

rsynth 47 1/83.89/716 1 2

sha 7 12/49.71/147 0 1

stringsearch 10 3/41/81 1 1

susan 19 15/275.21/1153 1 2

typeset 362 1/327.61/11744 27 53

unnecessarily the optimisation complexity, but SalSSA offers a better solution where

only merged functions are affected.

An interesting case is observed with both cjpeg and djpeg. Although SalSSA,

with exploration threshold t = 1, increases code size, it is merging a superset of the

pairs of functions merged by FMSA with t = 1. If we limit SalSSA to merge exactly

the same pairs merged by FMSA, it ends up with about the same or slightly better

results than FMSA. This suggests that the marginal code-size increase observed with

SalSSA is a result of false positives from the profitability cost model, i.e., it allows

unprofitable merge operations to be committed. Since cjpeg and djpeg share most of

their code base, we can indeed confirm that a subset of the pairs of functions merged by

SalSSA, for both benchmarks, should have been classified as unprofitable as merging

them increases the code size. However, with higher exploration thresholds, namely,

t = 5 and t = 10, SalSSA surpasses FMSA in code-size reduction, although it still

74 Chapter 5. Effective Function Merging in the SSA Form

CRC32
FFT

adpcm_c

adpcm_d

basic
math

bitc
ount

blowfis
h_d

blowfis
h_e

cjpeg

dijk
str

a
djpeg

ghosts
crip

t
gsm

isp
ell

patri
cia pgp

qsort

rijn
dael

rsy
nth sha

str
ingsearch

susan

typeset

GMean
0
1
2
3
4
5
6
7
8

R
e
d

u
ct

io
n

 (
%

)

0
.10.8

1
.4

1
.5

1
.6

FMSA Residue FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

ARM Thumb

Figure 5.17: The percentual reduction in size of the linked object files, targeting the

ARM architecture. We evaluate SalSSA or FMSA over the LLVM LTO on the MiBench

embedded benchmark suite. Each approach was evaluated using three different explo-

ration thresholds. SalSSA achieves a geo-mean reduction of 1.4% to 1.6%, about twice

as much as FMSA.

0.4

0.2

0.0

0.2

R
e
d

u
ct

io
n

 (
%

)

Figure 5.18: A breakdown of SalSSA[t = 1] on the djpeg benchmark. The actual

contribution to the final code size for each merge operation deemed profitable by the

cost model.

includes all pairs merged with the exploration threshold t = 1.

Figure 5.18 shows a breakdown for each merge operation performed by SalSSA,

with exploration threshold t = 1, on the djpeg benchmark. We measured the impact

of each merge operation, in isolation, to the size of the final object file. Although each

one of these merge operations have a very small contribution to the final code size,

the profitability cost model failed enough to result in an overall code increase of about

0.3%.

Both SalSSA and FMSA use the same profitability cost model. The limitations

observed on cjpeg and djpeg also appear in SPEC2017 with FMSA. This stems from

the fact that several transformations will still be applied to the code during late optimi-

sations and the back end, and these changes are not captured by the profitability cost

model.

5.3. Evaluation 75

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

G
M

e
a
n

0

10

20

30

R
e
d

u
ct

io
n

 (
%

)

3
.8 8

.1 9
.3

SalSSA-NoPC [t=1]FMSA [t=1] SalSSA [t=1]

Intel x86

Figure 5.19: Evaluation of the impact of phi-node coalescing on the size of the final

object file. SalSSA-NoPC, which includes phi-node coalescing, has a measurable ben-

efit over the alternative without phi-node coalescing (SalSSA-NoPC). When enabled,

phi-node coalescing achieves up to 7% of code size reduction on top of SalSSA-NoPC.

5.3.4 Further Analysis

We also provide a breakdown showing the impact of phi-node coalescing on code

size. Figure 5.19 shows the impact of our phi-node coalescing optimisation technique

(see Section 5.2.4). This diagram compares SalSSA to a variant without phi-node

coalescing (SalSSA-NoPC) and FMSA. On average, this technique gives an additional

1.2% on code size reduction. For444.namd, it enables an extra 7% reduction on the

code size, demonstrating the great advantage of the technique.

Figure 5.20 provides further insight into the gains of SalSSA. The figure shows the

total number of profitable merging attempts for the lowest exploration threshold. While

FMSA has only 9,271 profitable merge operations, SalSSA has 12,224, an increase of

31% on the number of profitable merges. Much of the improvement we observe in

code size reduction comes from producing profitable merged functions where FMSA

fails to gain any profit, not just from increasing the profit.

5.3.5 Memory Usage

Because the sequence alignment algorithm [57, 63] (used by FMSA and SalSSA) has

a quadratic space complexity over the length of the sequences, the difference in the

size of the functions caused by register demotion translates directly to the differences

in memory usage.

Figure 5.21 shows the peak memory usage across the SPEC CPU2006 suite. To iso-

76 Chapter 5. Effective Function Merging in the SSA Form

0

200

400

600

800

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

#
 M

e
rg

e
 O

p
e
ra

ti
o
n

s

2975 3648

1
7

5
2

8
9

6 1
2

5
9

3

929

1 6

4
3

5 5
3

3

2
6 4
5

5 2
4

1
5

5 2
4

4

1
9

2 2
7

6

4
4 9

4

1
1 1
6

4339 5577

9 1
5 5
0 1

0
1 2

2
7 3

2
9

0 2 4 1
5 2
4 6
9

FMSA

SalSSA

5
0 9

5
G

M
e
a
n

Figure 5.20: Total number of profitable merge attempts for SalSSA and FMSA on 19

SPEC CPU2006 benchmarks. For both cases, we used the lowest exploration threshold

(t=1). SalSSA achieves 31% more profitable merge operations.

4
0

0
.p

e
rl

b
e
n

ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

il
c

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a
n

tu
m

4
6

4
.h

2
6

4
re

f

4
7

0
.l

b
m

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h

in
x3

4
8

3
.x

a
la

n
cb

m
k

G
M

e
a
n0

200

400

600

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

1
5

3
.5

9
4

.8

FMSA [t=1] SalSSA [t=1]
6.5 GB

2.4 GB

Figure 5.21: Peak memory usage during compilation time on the SPEC CPU2006

benchmark. On average, SalSSA requires less than half the memory used by FMSA.

late the impact of other compilation passes, we measure the memory usage only when

running the function merging optimisation. As expected, avoiding register demotion

has the added benefit of lowering the memory footprint of the compilation pass. On av-

erage, SalSSA uses half the amount of memory required by FMSA. The improvements

on memory usage shown in this Figure 5.21 directly reflects the difference shown in

Figure 5.4.

Both FMSA and SalSSA starts merging from the largest to the smallest functions.

For the 403.gcc benchmark, the first pair of functions considered for a merging is

the pair recog 16 and recog 26 that originally contains 20,688 and 16,043 instruc-

tions, respectively, but after register demotion grow to 36,508 and 28,899. This pair

5.3. Evaluation 77

4
0
0
.p
e
rl
b
e
n
ch

4
0
1
.b
zi
p
2

4
0
3
.g
cc

4
2
9
.m

cf

4
3
3
.m

il
c

4
4
4
.n
a
m
d

4
4
5
.g
o
b
m
k

4
4
7
.d
e
a
lI
I

4
5
0
.s
o
p
le
x

4
5
3
.p
o
vr
a
y

4
5
6
.h
m
m
e
r

4
5
8
.s
je
n
g

4
6
2
.l
ib
q
u
a
n
tu
m

4
6
4
.h
2
6
4
re
f

4
7
0
.l
b
m

4
7
1
.o
m
n
e
tp
p

4
7
3
.a
st
a
r

4
8
2
.s
p
h
in
x3

4
8
3
.x
a
la
n
cb
m
k0

2

4

6

8

10

S
p
e
e
d
u
p

3
.1
6

1
.6
8

Alignment

Code-Gen

G
M
e
a
n

Figure 5.22: Speedup over the accumulated time spent on both sequence alignment

and code generation. SalSSA produces significantly less overhead than the FMSA.

of extremely large functions is responsible for the peak in memory usage when op-

timizing this benchmark. FMSA uses a total of 6.5 GB of memory while SalSSA is

able to reduce it down to 2.4 GB. A total of 2.7× reduction on peak memory usage.

Although this is the most critical benchmark in terms of absolute numbers, a similar

trend appears in most of the other benchmarks. By reducing the memory overhead of

compilation, SalSSA thus can target a larger codebase over FMSA.

5.3.6 Compilation Time Overhead

Figure 5.23 shows the normalised compile-time for the entire compilation process on

SPEC CPU2006. The min-max bar in the diagram gives the 95% confidence interval

across different compile-time measurements of a benchmark. SalSSA incurs modest

compile-time overhead with an average 5% increase in the compile-time when using

the lowest exploration threshold (t = 1). This represents a 3x reduction in the compile-

time overhead compared to the 14% overhead from FMSA with the same exploration

threshold. When using the largest exploration threshold (t = 10), we observe a 3.7x

reduction in the compile-time overhead. The improvement is due to not only less time

spent performing the optimisation itself but also less work for the remaining compila-

tion process since we reduce the size of the produced code. We also observe similar

overhead improvement on SPEC CPU2017.

Figure 5.22 shows the speedups obtained by SalSSA for the sequence alignment

and the code generator. These two stages of function merging benefit most from our

techniques. As suggested earlier, both stages are accelerated because the compiler

78 Chapter 5. Effective Function Merging in the SSA Form

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk
0

1

2

3

4

N
o
rm

a
li

ze
d

 T
im

e

1
4

%
4

4
% 6
6

%
% 1
2

%
1

8
%

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

5

GMean

Figure 5.23: End-to-end compile-time for SalSSA and FMSA for three different explo-

ration thresholds and 19 different SPEC CPU2006 benchmark. Compile-time is nor-

malised to that of the baseline with no function merging. SalSSA reduces the overhead

of function merging by 3× to 3.7× on average.

FMSA [t=1] FMSA [t=5] FMSA [t=10] SalSSA [t=1] SalSSA [t=5] SalSSA [t=10]

0.7

0.8

0.9

1.0

1.1

1.2

N
o
rm

a
li

ze
d

 R
u

n
ti

m
e

400.perlb
ench

401.bzip
2

403.gcc

429.m
cf

433.m
ilc

444.namd

445.gobmk

447.dealII

450.so
plex

453.povray

456.hmmer

458.sje
ng

462.lib
quantum

464.h264ref

470.lb
m

471.omnetpp

473.asta
r

482.sp
hinx3

483.xalancbmk

2
% 2
% 2
%

4
% 3
% 4
%

GMean

Figure 5.24: Comparison between the runtime impact from FMSA and SalSSA. Our

approach increases the runtime overhead because it merges more functions. For most

benchmarks, the overhead is small. For the rest, profiling-directed merging would elim-

inate the overhead.

has shorter sequences to operate on under SalSSA over FMSA. The results given in

Figure 5.22 and Figure 5.4 follow a very similar trend. These confirm our intuition

described earlier in Section 6.1.

Since the sequence alignment algorithm is also quadratic in time over the length of

the sequences, we get a quadratic speedup by avoiding register demotion with SalSSA.

Code generation is linear on the size of the functions resulting in proportional speedups

in compile-time. For a couple of cases, however, the pressure put on the clean-up phase

can negate those gains.

5.4. Conclusion 79

5.3.7 Performance Overhead

The primary goal of function merging is to reduce code size. Nevertheless, it is also

important to keep the impact on the program runtime as low as possible. Figure 5.24

shows the normalised execution time, where the min-max bar shows the 95% confi-

dence interval across different runs. Overall, SalSSA has an average overhead of about

4% on programs’ runtime. For most benchmarks, there is no statistically significant

difference between the baseline and the optimised binary. For the rest, profiling infor-

mation could be used to avoid adding overhead when mergeable code is in the most

frequently executed code path.

5.4 Conclusion

We have presented SalSSA, a novel compiler-based function merging technique with

full support for the SSA form. Unlike FMSA, which has to apply register demotion to

eliminate the commonly used phi-nodes in SSA, SalSSA directly processes phi-nodes

using a more powerful code generator. As a result, SalSSA avoids the code bloat-

ing problem introduced by register demotion and increases the chances of generating

profitable merged functions. We have implemented SalSSA in LLVM and evaluated

it on the SPEC CPU2006 and CPU2017 benchmark suites. SalSSA delivers on aver-

age 9.5% code reduction for the lowest exploration threshold. Compared to FMSA,

SalSSA achieves 2× more reduction on binary size with 3× less compile-time over-

head and less than half the amount of memory required by it.

Chapter 6

Function Merging for Free

The technique proposed in Chapter 5, SalSSA, can lead to 40% slower compilation,

taking up to 32 GB of memory for temporary data when compiling a modestly-sized

program. Such a resource requirement is beyond what is typically available to a devel-

oper and thus unsuitable for optimizing real-life programs.

These inefficiencies stem directly from SalSSA’s core innovation, i.e., the sequence

alignment algorithm used to identify mergeable instructions in a pair of input functions.

The alignment algorithm has quadratic time and space complexity, so applying it on

whole functions with thousands of instructions results in unacceptable overheads. This

severely limits the applicability of function merging on relatively large programs. To

make function merging scalable and practical, we need to find ways to significantly re-

duce the memory and compilation overhead. In this chapter, we offer such capabilities.

We present HyFM, a novel function merging technique that addresses the perfor-

mance inefficiencies of SalSSA. Our main insight is that most of the code reduction

of SalSSA comes from matching highly similar basic blocks. Even though it is able

to align arbitrary subsequences spanning basic block boundaries, profitable alignments

usually contain instructions from one block matched to instructions from a single other

block. We show that an approach which quickly identifies similar basic blocks and then

aligns their short instruction sequences achieves a similar code reduction for a much

lower overhead.

More specifically, our solution is three fold:

• We align the input functions on a per basic block manner. First, we pair similar

basic blocks by minimizing the distance between their fingerprints. Then, we

only align the instructions within each pair of basic block. Even with a quadratic

alignment algorithm, basic blocks are usually much shorter than functions, trans-

81

82 Chapter 6. Function Merging for Free

lating into a much faster alignment.

• We propose a linear pairwise alignment as an alternative to the quadratic one. For

highly similar basic blocks, it achieves similar results but has negligible time and

space overheads.

• We estimate the profitability of the aligned basic blocks before actually gener-

ating their merged code. If unprofitable, we ignore them, improving the overall

profitability of the whole merged function and simplifying code generation. If all

paired blocks in a pair of functions are unprofitable, we skip merging the func-

tion pair altogether, speeding up the optimisation process compared to SalSSA.

Experimental results on SPEC CPU 2006 and 2017 show that HyFM runs over

4.5× faster than SalSSA. Compared to a baseline without function merging, HyFM

reduces end-to-end compilation time by up to 18% and 2.1% on average. HyFM also

has orders of magnitude lower peak memory usage, using up to 48 MB or 5.6 MB,

depending on the variant used, while SalSSA requires 32 GB in the worst case. We

achieve all these compilation-time benefits without degrading its ability to reduce code

size.

6.1 Background and Motivation

In this section, we first provide an overview of the working mechanism of SalSSA,

described in Chapter 5. We highlight the main drawbacks of SalSSA in terms of com-

pile time and memory footprint. We then outline how we can address these drawbacks

without compromising on code size reduction.

6.1.1 Function Merging via Sequence Alignment

Existing function merging techniques consist of three major stages: choosing which

functions to merge, producing the merged function, and estimating the merging prof-

itability.

In order to pair similar functions for merging, SalSSA employs a ranking strategy

based on the similarity of the fingerprints of the functions. A fingerprint summarises

the content of a function as a fixed-size vector of the frequency of each LLVM-IR

opcode. The representation allows the compiler to compare functions using a simple

distance metric, such as the Manhattan distance. For a given reference function, all

6.1. Background and Motivation 83

other functions are ranked based on their distance and the closest function is chosen

for merging.

Merging two functions requires identifying similar code segments in the two func-

tions that can be profitably merged. The main innovation of SalSSA [64] and FMSA [63]

is the use of a sequence alignment algorithm, called the Needleman-Wunsch algo-

rithm, for identifying similar code segments. This allows them to merge arbitrary pairs

of functions. First, they transform each function into a linear sequence of labels and

instructions. Then, the alignment algorithm is applied on the sequences of the whole

input functions. The resulting alignment is used to generate the merged function. Once

the merged function has been generated, they apply an SSA reconstruction algorithm.

For a final clean up, they simplify the merged function by removing redundant instruc-

tions introduced by function merging.

Finally, a profitability analysis estimates the benefit of replacing the original pair

of functions with the simplified merged function. If unprofitable, the merged function

is simply thrown away. Otherwise, they delete the original functions, redirecting the

calls to the merged function.

6.1.2 Limitations of SalSSA

After further investigation, we observed that SalSSA was unable to optimise 602.gcc s,

from SPEC 2017, due to an out of memory crash. Our machine with 16 GB of memory

was not enough to handle SalSSA. We succeeded only after migrating to a 64 GB ma-

chine which could fit the 32 GB of temporary data produced by function merging. We

realised that this is due to the quadratic algorithm used for aligning the two functions

selected for merging. Because this algorithm is applied on the linearised sequences

of the whole input functions, SalSSA incurs a high memory footprint when merging

even medium sized functions. For larger ones, it is impossible to apply it on most

workstations or even many servers, making SalSSA impractical for use in production.

For the same reason, alignment brings the compilation process to a crawl for large

functions. Figure 6.1 shows the running time breakdown for the different stages of

the function merging pass in the LLVM-based SalSSA implementation for two SPEC

CPU2017 benchmarks. Sequence alignment dominates the running time of function

merging, representing up to 83% of its overall running time. Sequence alignment alone

takes 25 seconds and 4.2 minutes on 638.imagick s and 602.gcc s, respectively.

The alignment stage also causes the peak in memory usage for these two programs,

84 Chapter 6. Function Merging for Free

4.5 GB for 638.imagick s and 32 GB for 602.gcc s. This is not surprising, as the

Needleman-Wunsch algorithm has a quadratic complexity in both time and memory

usage. Because this algorithm is applied on linearised sequences of the whole input

functions, programs containing large functions, such as the ones in our example, are

heavily affected.

2.1%

83.6%

2.7%
2.4%

7.2%
2.0%

638.imagick_s 602.gcc_s

Ranking Alignment Code-Gen

SSA Fix Simplification Others

0.4%4.2%
4.1%

11.5%

3.1%

76.7%

Figure 6.1: Breakdown of the relative runtime for the different stages from SalSSA.

Alignment takes 25 seconds and 4.2 minutes on 638.imagick s and 602.gcc s, re-

spectively.

Most of the rest of the running time of function merging is associated with produc-

ing merged functions from the aligned sequences. This includes the time spent on the

code generation stage (Code-Gen), SSA reconstruction (SSA Fix), and code simplifi-

cation (Simplification). These stages account for 18.7% of the SalSSA’s running time

on 638.imagick s and 11.6% on 602.gcc s. However, for other programs, these

stages may represent the vast majority of SalSSA’s running time (see Section 6.3.3).

This breakdown includes the cost for producing both profitable and unprofitable

merged functions. In fact, most of it is wasted on merged functions that will be re-

jected by the profitability analysis. These costs are pronounced because unprofitably

merged functions have no limit on their size or complexity, often adding a significant

pressure on the SSA reconstruction and simplification stages. This effect is tied to the

alignment strategy, since a good alignment is needed for producing profitably merged

functions. As we discuss in Section 6.1.3, a better approach would include a finer

grain profitability analysis that would allows us to bail out from merging complex and

unprofitable code as early as possible.

6.1. Background and Motivation 85

6.1.3 When Less is More

We observe that most of the benefit of function merging often comes from merging

highly similar, but not necessarily identical, basic blocks. Figure 6.2 shows one such

example extracted from the 483.xalancbmk benchmark found in SPEC CPU2006.

This example shows the two input functions annotated with the alignment produced by

SalSSA. Merging these two functions contributes to a reduction of 33 bytes in the final

object file.

Lb1
 %x1 = bitcast @file

%x2 = call ftell(%x1)
%x3 = trunc %x2
%x4 = icmp eq %x3, -1
br %x4, Lb2, Lb3

ret %x3

Lb3Lb2
 %v6 = call alloc_except(48)

%v7 = bitcast %v6

invoke UtilsExcept(%v7, %v8)
%v8 = gep @str.1, 0, 0

 Lb4, Lb5

Lb2
 %x5 = call alloc_except(48)

%x6 = bitcast %x5

invoke UtilsExcept(%x6, %x7)
%x7 = gep @str.2, 0, 0

 Lb4, Lb5

Lb5
 %x8 = landingpad

call free_except(%x5)
resume %x8

Lb5
 %v9 = landingpad

call free_except(%v6)
resume %v9

Lb4
 call throw(...)

unreachable
Lb4

 call throw(...)
unreachable

Lb3
%v10 = trunc %v3
ret %v10

Lb1
 %v1 = zext @toRead

%v3 = call read(%f, %v1, %v2)
%v4 = call ferror(%v2)
%v5 = icmp eq %v4, 0
br %v5, Lb3, Lb2

%v2 = bitcast @file

readFileBuffer(void*, unsigned,
 char*, MemoryManager*)

curFilePos(void*, MemoryManager*)

Figure 6.2: Example extracted from 483.xalancbmk in SPEC CPU2006. Instructions

marked green have been aligned through sequence alignment with an instruction from

the other function. SalSSA would attempt merging all matched instructions but only the

ones in fully aligned basic blocks would be profitable.

While this approach is flexible enough to identify very complex alignments, what

it actually produces is three aligned pairs of basic blocks and a few aligned instructions

86 Chapter 6. Function Merging for Free

in the entry blocks. More importantly, these entry block instructions offer nothing in

terms of code size reduction. The gains of merging them are negated by the extra

branches and operand selections needed to preserve the program’s semantics. Since

SalSSA analyzes the profitability of the final merged function as a whole, this unprof-

itable sequence of instructions will be merged because of the three highly profitable

basic blocks. For the same reason, we may have profitable areas of code rejected be-

cause the rest of the merged function is unprofitable.

This example shows us that we could achieve similar code size reduction by break-

ing the problem of aligning functions into two simpler processes: first identifying

highly similar basic blocks and then aligning the instructions in each pair of simi-

lar blocks. By operating on basic blocks, we could greatly reduce the length of the

sequences to be aligned and the associated compilation and memory overhead. Fur-

thermore, by making profitability decisions for each pair of basic blocks separately,

we could avoid merging unprofitable pairs. The rest of this chapter shows how we use

such an approach to overcome the weaknesses of SalSSA and make function merging

practical for optimizing large programs.

6.2 Hybrid Function Merging

In this section, we propose HyFM (Hybrid Function Merging), a novel function merg-

ing technique that can operate on all functions regardless of their size with little to no

compilation overheads. To achieve this goal, we rely on the insights discussed in Sec-

tion 6.1. Our solution is three-fold: 1) We introduce an alignment strategy that works

on the level of basic blocks, without crossing their boundaries, leading to faster and

less memory demanding alignment; 2) We incorporate a multi-tier profitability anal-

ysis that allows us to bail out from unprofitable merging attempts even before code

generation; 3) We introduce a linear pairwise alignment for basic blocks of the same

size that produces good results on highly similar blocks. This technique can be enabled

as an alternative to the quadratic sequence alignment algorithm. Both techniques have

their place, offering different trade-offs.

6.2.1 Overview

For all candidate functions and basic blocks, we generate a fixed-vector representation,

namely, their fingerprint [63, 64]. We match each function with its most similar avail-

6.2. Hybrid Function Merging 87

able function, the one with the shortest fingerprint distance. Instead of aligning their

linearised representations directly, we work at the basic block level. We pair similar

basic blocks of the two functions based on their fingerprint distances. We align the

instructions in these paired basic blocks using either the Needleman-Wunsch align-

ment [57] or our linear pairwise alignment strategy. We employ the first-tier profitabil-

ity analysis on each alignment. If the cost model deems it unprofitable, we skip the

pair. The pairing of basic blocks, the alignment, and the first-tier profitability analysis

are executed in rounds, in a greedy manner. That is, the first profitable pairing is taken,

however, unprofitable paired blocks are freed for another pairing, if necessary.

Once all basic blocks have been processed, we combine the block alignments into a

function-wide one and we produce the merged function using the same code generation

proposed for SalSSA [64]. If no profitable pair of basic blocks was found, we bail

out before code generation. Finally, we perform the second-tier profitability analysis,

which is the same used by SalSSA, to decide whether replacing the original functions

by the merged one reduces code size. If not, we reject the merged function and we

keep the original ones.

For brevity, the rest of the discussion will focus on how HyFM differs from previ-

ous approaches.

6.2.2 Pairing Similar Basic Blocks

We pair similar basic blocks based on distance of their fingerprints. This pairing pro-

cess is similar to the search strategy used for pairing functions [63]. We use the same

fingerprint, a fixed-size vector of integers with the frequency count of each opcode. It

can be used to represent any piece of code, from basic blocks to whole functions.

The overall idea is that for each block in one function we select a block from

the other function that minimises the Manhattan distance between their fingerprints.

Formally, given a block B1 ∈ F1, where F1 is the set of all blocks from function one,

B1 is paired with a block Bm ∈ F2 such that:

d(B1,Bm) = min{d(B1,B2) : B2 ∈ F2}

where d(B1,B2) represents the distance between the fingerprints of the basic blocks B1

and B2.

After pairing two basic blocks, B1 and B2, they have their instructions aligned

(see Section 6.2.3) and their merging profitability estimated (see Section 6.2.4). If

88 Chapter 6. Function Merging for Free

they are deemed profitable, both blocks are removed from their respective working

list. Otherwise, only B1 is removed from the working list of blocks from F1, i.e., B2

can still be paired with another block, but not B1. In other words, basic blocks from

function F1 are paired only once, even if its alignment is deemed unprofitable. As a

result, given two input functions, this pairing process is quadratic on their number of

basic blocks. This number is usually much smaller than the number of instructions

in the function, so the cost of pairing is much lower than the cost of aligning whole

functions in SalSSA, despite both being quadratic. For very large numbers of basic

blocks, efficient nearest neighbor search techniques could keep the cost low but this

was not needed in our experiments.

HyFM pre-computes the fingerprint of every basic block in the input functions,

which is a single linear cost over all their basic blocks and instructions. Meanwhile,

the distance between two fingerprints is computed in constant time, since the number

of opcodes is a small constant.

6.2.3 Aligning Paired Basic Blocks

Basic blocks already represent a linearised sequence of instructions. Any sequence

alignment algorithm can be used on them the same way they can be used on linearised

functions. The globally optimal Needleman-Wunsch [57] used by SalSSA remains a

good choice. It may be quadratic in both space and time on the length of the sequences

but basic block sequences are usually much shorter than functions, making the cost of

alignment lower than in previous approaches.

Our observations in Section 6.1, though, indicate that a globally optimal algorithm

might be an excessive solution. Profitable sequences tend to be highly similar, so align-

ing them is usually straightforward. Based on this insight, we implemented a linear

alignment algorithm. Its assumption is that profitable pairs of blocks are almost iden-

tical in terms of opcodes differing only in a few individual cases. This translates into a

pairwise alignment of same size basic blocks where only corresponding instructions in

the two blocks can match. Figure 6.3 illustrates two examples of basic blocks aligned

using our strategy. It also includes the costs estimated by our profitability analysis,

which we discuss in Section 6.2.4.

Restricting alignment to basic blocks of the same size has the added benefit that it

simplifies the pairing strategy. We only have to consider fingerprints for basic blocks

of the same size, so we group them by block size and we restrict our search in the right

6.2. Hybrid Function Merging 89

 %v1 = gep %this, 0, 5

%v3 = load %v2

%v4 = icmp eq %v3, 0

br %v4, Lb3, Lb2

%v2 = bitcast %v1

%sw.bb

 %x1 = alloca

%x3 = load %x2

%x4 = icmp eq %x3, 73

br %x4, Lb3, Lb2

%x2 = gep %this, 0, 1

%entry 0
2
2
1
1
1

+1

+2

Merged Cost: 10

(a) A profitable alignment. Both OriginalCost and MergedCost are 10. The final score is

OriginalCost−MergedCost = 0.

 %v1 = gep %this, 0, 21

store %c, %v2

%v3 = gep %this, 0, 0

%v4 = load %v3

%v2 = bitcast %v1

%entry

 %x1 = extract %pn

%x3 = gep %x2, 8

%x4 = bitcast %x3

%x5 = load %x4

%x2 = call catch(%e)

%entry 0
2
2
2
2
1

invoke printfm(...) 2%x = invoke create(%x1)

+1

+2
+1

Merged Cost: 15

(b) An unprofitable alignment. OriginalCost is 0 and MergedCost is 15. The final score is −3.

A negative score means it is unprofitable.

Figure 6.3: Two examples of the pairwise alignment. Only instructions in corresponding

positions are aligned. Instructions match if they have the same opcode.

group. In the worst case, all basic blocks would have the same size and the search

would remain quadratic on the number of basic blocks, as discussed in Section 6.2.2.

However, this is unlikely to happen in large functions, which is where the number of

basic blocks might be a problem. Overall, this solution is lean on memory usage and

usually the fastest for aligning paired basic blocks, as corroborated by our evaluation

in Section 6.3.

6.2.4 Multi-Tier Profitability Analysis

HyFM incorporates a multi-tier profitability analysis that enables it to bail out early

from an unprofitable merge operation. The first tier consists of a simple analysis ap-

plied on each pair of basic blocks selected for alignment, either accepting or rejecting

the alignment between two blocks. The second tier consists of the same profitability

analysis that is also performed by FMSA and SalSSA, which is responsible for evalu-

ating whether the merged function is smaller than the original input functions.

The last column of Figure 6.3 shows how the first tier analysis is employed along-

side the pairwise alignment strategy. The same analysis can also be applied on pairs

of basic blocks aligned using the Needleman-Wunsch algorithm. The analysis tries

90 Chapter 6. Function Merging for Free

to estimate the cost of merging, the total number of instructions that will be neces-

sary for merging the aligned blocks. If two instructions match, then a single instruc-

tion is needed (i.e., a cost of +1 is assigned to this entry). If they mismatch, then

both instructions are needed (i.e., a cost of +2 is assigned to this entry). Moreover,

we need extra instructions to transition from matching subsequences to mismatching

ones, and vice versa. This is represented by the arrows in Figure 6.3. One branch

instruction is needed to split control flow into two mismatching instructions, while

two branch instructions are needed to join it back into a matching pair of instruc-

tions. The MergedCost is the sum of all these costs. The profitability score is defined

as OriginalCost−MergedCost, where OriginalCost is simply the number of instruc-

tions in the original basic blocks. Therefore, a negative profitability score means that

merging those two basic blocks is unprofitable. When this is the case, we ignore the

alignment.

By rejecting individual basic block alignments, we are able to decide early whether

merging a pair of functions might be profitable. If we rejected all block alignments,

then by definition there is no point in merging the functions. Previous approaches,

without a first tier analysis, have to rely on the second tier exclusively which is applied

after the functions are merged.

6.2.5 Independence from Code Layout

Unlike all prior techniques, HyFM is able to merge similar basic blocks regardless of

their position in the control-flow graphs from the input functions. Figure 6.4 shows an

example of two functions that all prior techniques fail to merge even though they are

highly similar.

SPxId id(int i) const {
 if (rep() == ROW) {
 SPxRowId rid = SPxLP::rId(i);
 return SPxId(rid);
 } else {
 SPxColId cid = SPxLP::cId(i);
 return SPxId(cid);
 }

}

SPxId coId(int i) const {
 if (rep() == ROW) {
 SPxColId cid = SPxLP::cId(i);
 return SPxId(cid);
 } else {
 SPxRowId rid = SPxLP::rId(i);
 return SPxId(rid);
 }
}

Figure 6.4: Example with code reordering extracted from the 450.soplex program.

Due to their rigid linearisation strategy, both FMSA and SalSSA are unable to

properly match the basic blocks of the if-else structure, resulting in sub-optimal merged

6.3. Evaluation 91

functions that are deemed unprofitable. Their linearisation traverses the control-flow

graph in a canonical manner, preventing blocks from being rearranged for a better

merging [63, 64]. Meanwhile, earlier techniques fail to merge this example as they are

restricted to functions with identical control-flow graphs where corresponding blocks

are merged [2, 23, 50].

HyFM is able to correctly pair these basic blocks. Because the basic blocks are

rearranged, the label operands of the conditional branch need to be handled in order to

preserve the program semantics. For swapped label operands, HyFM simply uses the

optimised operand resolution proposed by SalSSA, where an xor operation is applied

on the condition of the branch and the function identifier [64].

6.3 Evaluation

In this section, we compare HyFM against SalSSA, presented in Chapter 5. First, we

evaluate the code size reduction achieved by each technique, demonstrating that our

approach is on a par with SalSSA. Then we show that HyFM reduces significantly the

overhead of function merging. Combined with the speedup in later stages of the com-

pilation pipeline due to the reduced amount of code, HyFM leads to faster end-to-end

compilation than a baseline with no function merging enabled. Finally, we demonstrate

how our contributions reduce the memory usage by several orders of magnitude.

6.3.1 Experimental Setup

In addition to evaluating SalSSA, we also consider four variations of our technique

based on two dimensions: 1) the linear Pairwise Alignment (PA) versus the quadratic

Needleman-Wunsch Alignment (NW), both on a per basic block manner and 2) using

a multi-tier profitability analysis versus using only the standard profitability analysis

from SalSSA, which is the analysis applied on the whole function after generating the

merged function. As described in Section 6.2, the [PA] variant is, by construction,

limited to merging only basic blocks of the same size. The [NW] variant can merge

blocks of different sizes. The four variations are:

• [PA]: PA with the Multi-tier Profitability analysis.

• [PA,NMP]: PA with No Multi-tier Profitability.

• [NW]: NW with the Multi-tier Profitability.

92 Chapter 6. Function Merging for Free

• [NW,NMP]: NW with No Multi-tier Profitability.

To keep the comparison fair, we implemented HyFM for the same compiler as

SalSSA, LLVM v11. We evaluated all techniques on the C/C++ programs from the

SPEC CPU 2006 and the SPEC CPU 2017 benchmark suites [69]. The baseline in all

cases is the LLVM build in full LTO mode without any function merging.

We target the Intel x86 architecture. All experiments were performed on a ded-

icated server with a quad-core Intel Xeon CPU E5-2650, 64 GiB of RAM, running

Ubuntu 18.04.3 LTS. To minimise the effect of measurement noise, we repeated all

compilation and runtime overhead experiments 5 times. We report the average values

and their 95% confidence intervals.

We evaluate all approaches in terms of code size reduction, time overhead of func-

tion merging, end-to-end compilation time, and peak memory usage. To better examine

the trade-off between code size reduction and compilation time, we also introduce and

measure a new metric called average reduction speed which shows the efficiency of

the optimisation at reducing code size. This metric offers a single number that allows

us to compare how different versions address the trade-off between compilation time

and code size reduction.

Definition 1 (Average Reduction Speed) For a given input program and optimisa-

tion, let S and S0 be the size of the program with and without the given optimisation,

respectively. R = S0− S represents the reduction achieved by such optimisation. Let

T be the running time of the optimisation pass. We define the average reduction speed

as:

ARS =
R
T

6.3.2 Code Size Reduction

Figures 6.5 reports the reduction on the size of the linked object files produced by the

compiler. While limiting alignment at a basic block granularity seems restrictive, its

effect on code size is small. Even the worst performing variants of HyFM are still

within 3 percentage points of SalSSA, while both [PA] and [NW] achieve good results

that are on a par with SalSSA. [PA]’s code size reduction varies from 5 percentage

points worse to over 10 points better than SalSSA. On average, it is within 1 percentage

point of the reduction achieved by SalSSA. [NW] almost always achieves better code

size reduction than [PA] and on average outperforms SalSSA by a small margin. Since

6.3. Evaluation 93

our primary aim is to reduce the high compile-time overheads of SalSSA a small loss

of code reduction is acceptable.

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p
2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
4

5
.g

o
b
m

k

4
4

7
.d

e
a
lII

4
5

0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.l
ib

q
u
a
n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b
m

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h
in

x
3

4
8

3
.x

a
la

n
cb

m
k

M
e
a
n

0

5

10

15

20

25

30

R
e
d
u
ct

io
n
 (

%
)

1
1

.4
8

.4 1
0

.5
9

.1 1
1

.7

SalSSA HyFM [PA,NBP] HyFM [PA] HyFM [NW,NBP] HyFM [NW]

(a) SPEC CPU 2006.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d

e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b

m
_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p

sj
e
n
g

_s

6
3

8
.i
m

a
g

ic
k_

s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b

_s

6
5

7
.x

z_
s

M
e
a
n

0

5

10

15

20

25

30

35

R
e
d

u
ct

io
n
 (

%
)

1
0

.3
9

.3
9

.9
9

.5
1

0
.4

SalSSA HyFM [PA,NBP] HyFM [PA] HyFM [NW,NBP] HyFM [NW]

(b) SPEC CPU 2017.

Figure 6.5: Linked object size reduction over LLVM LTO when performing function merg-

ing with HyFM or SalSSA on SPEC CPU 2006 and 2017. On average, HyFM improves

code size reduction.

These results indicate that the multi-tier profitability analysis is the single most im-

portant component of our approach. The two variants without the multi-tier profitabil-

ity analysis, [PA,NMP] and [NW,NMP], are consistently worse than their counterparts

that include this analysis, i.e. [PA] and [NW]. The multi-tier analysis contributes on

average about 1 percentage point in code reduction for SPEC 2017 and more than 2

points for SPEC 2006. The multi-tier profitability analysis has an important impact

in the quality of the merged function. While SalSSA lets unprofitable merged subse-

94 Chapter 6. Function Merging for Free

quences through as long as they are outweighed by profitable subsequences elsewhere

in the merged function, HyFM filters such unprofitable subsequences out.

The next most important effect comes from the choice of alignment algorithm.

Needleman-Wunsch is on average half a percentage point better than Pairwise Align-

ment for SPEC 2017 and about one percentage point better for SPEC 2006. Given that

Pairwise Alignment only aligns blocks of the same size and does not try to discover

optimal alignments, this difference is smaller than one would expect. It indicates that

profitable pairs of basic blocks tend to be extremely similar if not identical, as dis-

cussed in Section 6.1. Still, Needleman-Wunsch results in more size reduction. When

code size reduction is paramount, [NW] might be a better choice than [PA], but as we

will see in Sections 6.3.4 and 6.3.6, there is still a trade-off to navigate.

We get the biggest improvement by [PA] compared to SalSSA and [NW] for lbm,

where it reduces the program’s object file by 18.5%, almost 13 percentage points more

than the competition. SalSSA is able to profitably merge two pairs of functions. On

the other hand, [PA,NMP] chooses to perform a chained merge of the three largest

functions in lbm, resulting in a significantly smaller binary. This is possible because

[PA,NMP] is merging some nearly identical pairs of basic blocks of the same size.

With the multi-tier profitability analysis, [PA] successfully identifies all four cases.

[NW] fails to identify all of these cases, even though it is still better than SalSSA. This

exposes existing limitations in the cost model used by our profitability analysis.

The two worst results for [PA] are for the namd benchmark in both SPEC 2006 and

SPEC 2017. SalSSA achieves close to 7 percentage points more than [PA] in code size

reduction. In both cases, Pairwise Alignment limits the number of successful merge

operations. The variants using Needleman-Wunsch recover most of the lost reduction.

6.3.3 Speeding Up Function Merging

Figure 6.6 shows the speedup of HyFM relative to SalSSA. This considers only the

time taken by the function merging pass, which include all stages discussed in Sec-

tion 6.1.2. Our novel technique achieves an impressive speedup. For [PA] it is on

average 5.28× faster for SPEC 2017 and 4.59× for SPEC 2006. Even in the worst

case, it achieves a 50% speedup. In the best case, for the SPEC 2017 gcc, function

merging under HyFM takes a total of 23.5 seconds instead of 302, which translates to

almost 13× less time.

All components of HyFM contribute towards this result but the multi-tier prof-

6.3. Evaluation 95

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
4

5
.g

o
b

m
k

4
4

7
.d

e
a
lII

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v
ra

y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.l
ib

q
u
a
n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b

m

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h
in

x
3

4
8

3
.x

a
la

n
cb

m
k

M
e
a
n

0

2

4

6

8

10

12

S
p
e
e
d
u
p

1
.0 1

.5
7

4
.5

9
0

.7
9

3
.1

SalSSA HyFM [PA,NBP] HyFM [PA] HyFM [NW,NBP] HyFM [NW]

(a) SPEC CPU 2006.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d
e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b
m

_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p
sj

e
n
g
_s

6
3

8
.i
m

a
g
ic

k_
s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b
_s

6
5

7
.x

z_
s

M
e
a
n

0

2

4

6

8

10

12

S
p
e
e
d
u
p

1
.0

1
.6

9
5

.2
8

0
.9

6 3
.5

SalSSA HyFM [PA,NBP] HyFM [PA] HyFM [NW,NBP] HyFM [NW]

(b) SPEC CPU 2017.

Figure 6.6: Speedup of the function merging pass in isolation relative to SalSSA. The

multi-tier profitability analysis reduces the number of unprofitable merge operations

leading to a significant speedup.

itability analysis has the most significant impact. The two variants with the multi-tier

profitability analysis achieve on average three to four times higher speedups than their

counterparts without it. To help us understand why, Figure 6.7 shows how the compila-

tion time of each approach is distributed across its various stages. Even though the time

spent on the alignment strategy becomes negligible with HyFM, the less optimal align-

ment often produces complex merged functions — code with an excessive amount of

branches, phi-nodes, and operand selections — slowing down SSA reconstruction and

code simplification. This effect is very pronounced for the blender benchmark, where

both [PA,NMP] and [NW,NMP] are slower than SalSSA due to the added pressure on

the SSA reconstruction algorithm, even though the alignment overhead is practically

96 Chapter 6. Function Merging for Free

zero. Similar effects can be observed in other benchmarks.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d

e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b

m
_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p

sj
e
n
g

_s

6
3

8
.i
m

a
g

ic
k_

s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b

_s

6
5

7
.x

z_
s

0
10
20
30
40
50
60
70
80
90

100
110
120
130

Ranking Alignment Code-Gen SSA Fix Simplification Others

N
o
rm

a
liz

e
d

 c
o
m

p
ile

-t
im

e
 (

%
)

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

S
a
lS

S
A

[P
A

,N
M

P
]

[P
A

]
[N

W
,N

M
P
]

[N
W

]

Figure 6.7: Breakdown of the relative runtime for the different stages of the function

merging pass. All measurements are normlised by SalSSA’s total runtime on the

corresponding benchmark. For every benchmark, we show SalSSA, [PA,NMP], [PA],

[NW,NMP], and [NW], in this order.

Enabling the multi-tier profitability analysis counters this effect by focusing code

generation exclusively on profitable blocks and functions. Most of the complex basic

blocks HyFM generates are not profitable for the same reason it is expensive to process

them. First-tier profitability filters them out. On top of that, most paired functions

under either SalSSA or HyFM are unprofitable. SalSSA has to merge them anyway

to determine their profitability. This is expensive and wasteful. Our approach, on the

other hand, is able to estimate profitability early. Only function pairs with any chance

of being profitable, that is pairs with at least one profitable pair of basic blocks, move

forward to the expensive merge stage.

The linear pairwise alignment contributes to the performance improvement, too.

The variants using pairwise alignment run on average 48% to 98% faster than their

Needleman-Wunsch counterparts. The most pronounced case is for lbm where [PA]

is around 3× faster than [NW]. The blocks paired in lbm are longer than usual, so

the quadratic Needleman-Wunsch spends significantly more time trying to align them

than our linear pairwise algorithm. Figure 6.7 shows that the added pairing restrictions

from [PA], to focus on blocks with higher similarities, also benefits later stages.

6.3. Evaluation 97

6.3.4 End-to-End Compilation Time

We have also analyzed separately the end-to-end compilation time because reducing

code size through function merging has knock-on effects in later stages of the com-

pilation pipeline. The first order effect is that reducing the number of functions tends

to reduce compilation time. This is not guaranteed though, because merged functions

may be more complex, potentially slowing down later compiler analyses and transfor-

mations. Moreover, the time spent merging functions may be so large that it negates

any benefits from having fewer functions later in the pipeline.

Even though on a few occasions SalSSA reduces end-to-end compilation time, in

general, its overhead is large enough to result in an overall compilation time slowdown,

9.5% to 4.1% for SPEC 2017 and 2006 respectively. In contrast, HyFM is so much

faster that its compilation time overhead is matched or outweighed by the speedup

in later stages. This reduction is marginal for SPEC 2017, but for SPEC 2006 [PA]

reduces the average compilation time by 2.3% and [NW] by 1.6%. There is only a

single case where [PA] results in a significant end-to-end slowdown, 10% for blender.

Figure 6.7 shows that, although [PA] runs faster than SalSSA, both of them spent a

significant amount of time ranking the function candidates, due to its large number of

functions. Ranking alone in this case takes around 70 seconds.

Overall, we believe that this reduction in end-to-end compilation time is a very

important result. While HyFM is still achieving code-size reduction on par with the

state-of-the-art, it does not have the detrimental effects of SalSSA on the overall com-

pilation process and can be safely applied.

6.3.5 Code Size and Compilation Time Trade-Off

While the multi-tier profitability analysis improves both code-size reduction and com-

pilation speed, the choice of alignment algorithm introduces a trade-off. Pairwise

alignment is better for speed, Needleman-Wunsch is better for code-size reduction. In

terms of compilation efficiency, i.e. how much code size reduction we get for the effort

we put in, the picture is clearer. In Figure 6.9, the average reduction speed suggests

that [PA] achieves the ideal trade-off, with an average reduction speed of 115.3 KB/s,

which is around 3× greater than SalSSA’s and 20% to 40% greater than [NW].

98 Chapter 6. Function Merging for Free

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p
2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
4

5
.g

o
b
m

k

4
4

7
.d

e
a
lII

4
5

0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.l
ib

q
u
a
n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b
m

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h
in

x
3

4
8

3
.x

a
la

n
cb

m
k

M
e
a
n

20
15
10

5
0
5

10
15
20
25
30
35
40

C
o
m

p
ile

-t
im

e
 i
n
cr

e
a
se

 (
%

)

4
.1

-1
.8

3
.5

-2
.3

8
.8

-1
.6

SalSSA HyFM [NW,SS] HyFM [PA,SS,NBP] HyFM [PA,SS] HyFM [NW,NBP] HyFM [NW]

(a) SPEC CPU 2006.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d

e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b

m
_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p

sj
e
n
g

_s

6
3

8
.i
m

a
g

ic
k_

s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b

_s

6
5

7
.x

z_
s

M
e
a
n

5
0
5

10
15
20
25
30
35
40

C
o
m

p
ile

-t
im

e
 i
n
cr

e
a
se

 (
%

)

9
.5

0
.2

6
.6

-0
.1

9
.3

1
.4

SalSSA HyFM [NW,SS] HyFM [PA,SS,NBP] HyFM [PA,SS] HyFM [NW,NBP] HyFM [NW]

(b) SPEC CPU 2017.

Figure 6.8: Normalised end-to-end compilation time for SPEC 2017 and SPEC 2006

relative to LLVM LTO.

6.3.6 Memory Usage

Another important aspect of function merging is peak memory usage. This is espe-

cially critical for an optimisation designed for LTO. Compilation in full LTO mode is

already memory hungry. Just keeping the whole program in memory can be a signif-

icant problem for large programs [38]. Maintaining additional information for every

function and basic block could easily tip the compiler over the edge.

Figure 6.10 shows the peak memory usage (in log scale) needed for the align-

ment stage alone. For SalSSA, this represents simply the execution of the Needleman-

Wunsch algorithm. For HyFM, the alignment stage represents both aligning each pair

of basic blocks as well as the pairing these basic blocks. Our results show that [PA]

6.3. Evaluation 99

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p
2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
4

5
.g

o
b
m

k

4
4

7
.d

e
a
lII

4
5

0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.l
ib

q
u
a
n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b
m

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h
in

x
3

4
8

3
.x

a
la

n
cb

m
k

M
e
a
n

0

50

100

150

200

250

300

350

A
R

S
 (

K
B

/s
)

4
7

.0
4

8
.8

1
3

4
.3

3
3

.4
1

1
4

.3

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

(a) SPEC CPU 2006.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d

e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b

m
_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p

sj
e
n
g

_s

6
3

8
.i
m

a
g

ic
k_

s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b

_s

6
5

7
.x

z_
s

M
e
a
n

0
50

100
150
200
250
300
350
400

A
R

S
 (

K
B

/s
)

3
5

.9
5

3
.5

1
1

5
.3

2
7

.4 7
8

.2

SalSSA HyFM [PA,NMP] HyFM [PA] HyFM [NW,NMP] HyFM [NW]

(b) SPEC CPU 2017.

Figure 6.9: Average reduction speed on both SPEC 2006 and 2017.

is over three orders of magnitude better than SalSSA, while [NW] is more than two

orders of magnitude better. In other words, while SalSSA requires on average 2.4 GB

of memory, [PA] uses only around 610 KB and [NW] uses 5.6 MB.

The peak memory usage is especially noticeable on gcc, when merging its two

largest functions, containing 90093 and 76265 instructions. Since SalSSA applies its

quadratic sequence alignment algorithm on the linearised sequences of the whole input

functions, it uses over 32 GB of memory when merging these two functions. Mean-

while, [NW] requires only around 5.6 MB for merging the same pair of input func-

tions, even though it employs the same sequence alignment algorithm. This is because

its peak memory usage is a quadratic function of the largest pair of blocks instead of

the largest pair of functions. Although very large, these two functions are composed of

100 Chapter 6. Function Merging for Free

several thousands of very small basic blocks, so the memory overhead of Needleman-

Wunsch is limited. Most of the memory consumed by [NW] in this case is actually

needed for storing the basic block fingerprints. This aspect becomes evident when we

compare the peak memory usage of [NW] with that of the [PA] for gcc. They have

similarly low memory requirements, even though only one of them uses a quadratic

alignment algorithm.

In other cases, where basic blocks are longer, pairwise alignment leads to a signif-

icantly lower peak memory usage compared to Needleman-Wunsch. For parest, for

example, pairwise alignment reduces memory usage from 40 MB to 200 KB. Overall,

[PA] needs around 6× less memory. For smaller programs, [NW] might be a viable

option but for larger ones being able to reduce memory usage to a minimum might be

more important.

6.4 Conclusion

We have presented HyFM, a novel technique for compiler-based function merging. By

operating on individual pairs of basic blocks, it eliminates most of the time and space

overheads of SalSSA. Through its multi-tier profitability analysis, it allows the com-

piler to bail out early from unprofitable merging attempts saving additional compilation

time.

We evaluate HyFM by applying it to SPEC CPU2006 and 2017 benchmark suites.

Overall, HyFM has surpassed SalSSA in terms of compilation time, memory usage, as

well as code size reduction. However, different variants of the proposed technique are

better suited for different goals. If the code size is the utmost concern, HyFM [NW]

is the winning strategy, but if we are looking for the most balanced trade-off between

compilation-time overheads and code-size reduction, HyFM [PA] has shown better

results.

6.4. Conclusion 101

4
0

0
.p

e
rl

b
e
n
ch

4
0

1
.b

zi
p
2

4
0

3
.g

cc

4
2

9
.m

cf

4
3

3
.m

ilc

4
4

4
.n

a
m

d

4
4

5
.g

o
b
m

k

4
4

7
.d

e
a
lII

4
5

0
.s

o
p
le

x

4
5

3
.p

o
v
ra

y

4
5

6
.h

m
m

e
r

4
5

8
.s

je
n
g

4
6

2
.l
ib

q
u
a
n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

0
.l
b
m

4
7

1
.o

m
n
e
tp

p

4
7

3
.a

st
a
r

4
8

2
.s

p
h
in

x
3

4
8

3
.x

a
la

n
cb

m
k

M
e
a
n

10 2

10 1

100

101

102

103

P
e
a
k

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

123.02

0
.2

3
0

.1
5

0
.1

5 0
.9

3
0

.9
5

SalSSA HyFM [NW,SS] HyFM [PA,SS,NBP] HyFM [PA,SS] HyFM [NW,NBP] HyFM [NW]

(a) SPEC CPU 2006.

5
0

8
.n

a
m

d
_r

5
1

0
.p

a
re

st
_r

5
1

1
.p

o
v
ra

y
_r

5
2

6
.b

le
n
d
e
r_

r

6
0

0
.p

e
rl

b
e
n
ch

_s

6
0

2
.g

cc
_s

6
0

5
.m

cf
_s

6
1

9
.l
b
m

_s

6
2

0
.o

m
n
e
tp

p
_s

6
2

3
.x

a
la

n
cb

m
k_

s

6
2

5
.x

2
6

4
_s

6
3

1
.d

e
e
p
sj

e
n
g
_s

6
3

8
.i
m

a
g
ic

k_
s

6
4

1
.l
e
e
la

_s

6
4

4
.n

a
b
_s

6
5

7
.x

z_
s

M
e
a
n

10 2

10 1

100

101

102

103

104

P
e
a
k

M
e
m

o
ry

 U
sa

g
e
 (

M
B

)

2420.97

3
.7

3
0

.6
1

0
.6

1 4
.4

7
4

.4
9

SalSSA HyFM [NW,SS] HyFM [PA,SS,NBP] HyFM [PA,SS] HyFM [NW,NBP] HyFM [NW]

(b) SPEC CPU 2017.

Figure 6.10: Peak memory usage of SalSSA and HyFM variants for SPEC 2006 and

2017 in log scale. SalSSA has a peak memory usage several orders of magnitude

hundreds higher than all other approaches. The pairwise alignment variants of HyFM

need on average only a seventh of the memory needed by the Needleman-Wunsch

variants.

Chapter 7

Conclusion

This thesis presents novel compiler optimisations based on function merging to reduce

code size. A function merging optimisation consists in combining multiple functions

with similarity into a single function, in order to reuse code, removing redundancies,

and reducing code size. In the next section, we summarise the main contributions from

this thesis. Finally, we suggest some future work.

7.1 Contributions

The main contribution of this thesis is a novel function merging technique capable of

merging arbitrary functions. The following chapters represent an effort towards im-

proving and simplifying the proposed technique. Although the main goal is to reduce

code size, we also focus on secondary factors such as compilation time, memory us-

age, and ease of implementation and maintenance. These secondary factors are crucial

for its potential adoption by production compilers. Finally, several lessons learned in

the development of our function merging techniques are transferrable to other impor-

tant optimizations based on merging similar code, such as function outlining and loop

rolling.

7.1.1 Merging Arbitrary Pairs of Functions

Chapter 4 describes a novel function merging optimisation, called FMSA. The pro-

posed technique is the first capable of merging any two functions. In order to achieve

that, our technique uses sequence alignment algorithms, from bioinformatics, to iden-

tify regions of similarity and difference between two functions. The sequence align-

103

104 Chapter 7. Conclusion

ment algorithm produces this similarity information by searching for the best align-

ment between sequences, given a penalty system. The resulting aligned sequence is

then used to generate a merged function that can replace both input functions.

Since we are able to merge arbitrary pairs of functions, we also need to identify

which pairs of functions can be profitably merged, reducing code size. First, we use

a profitability cost model that estimates the binary size of the input functions and the

merged function. Two input functions can be profitably merged if replacing them by

a merged function results in an overall smaller code. Then we integrate our function

merging technique with a search strategy.

Trying to merge every pair of functions in order to identify the most profitable

ones is prohibitive. Besides the quadratic search itself, merging two functions involve

a sequence alignment, which is quadratic on the size of the functions. Since an ex-

haustive search is infeasible, we need a better search strategy. First, we pre-compute

the fingerprint, which is a fixed-size representation, of every function in the program.

These fingerprints can be efficiently compared in constant time. For each function, the

search strategy consists of ranking all other candidate functions based on a fingerprint

similarity. Finally, the proposed optimisation will attempt to merge only the top ranked

candidate functions.

Our optimisation is able to reduce code size by up to 25%, with an overall average

of about 6%, when compared to a baseline without any function merging. Compared to

prior techniques, which contain many limitations on which functions they can merge,

our approach is able to outperform them by more than 2.4× on code size reduction.

Moreover, coupled with profiling information, our optimisation introduces no statisti-

cally significant impact on performance.

While representing a leap forward, experiments show that FMSA fails to reduce

code size in some cases where it would be intuitively expected to work. Chapters 5 and

6 addresses major limitations from FMSA, improving both its capabilities for reducing

code size as well as compilation-time overheads.

7.1.2 Effective Code Generator for the SSA Form

In order to simplify its code generator, the technique proposed in Chapter 4 replaced

all phi-nodes with memory operations by first applying register demotion. This tends

to almost double the function size, increasing compilation time and hindering function

merging, as it expects that applying register promotion to the merged function will

7.1. Contributions 105

reverse the negative effect of the earlier register demotion. This is often not possible

because function merging can add complexity to the memory operations, resulting in

unnecessarily larger merged functions.

Chapter 5 describes a novel approach for merging functions which is capable of

effectively handling the SSA form. The proposed approach, called SalSSA, achieves

this with a new code generator. Instead of translating the aligned sequences directly

into a merged function, SalSSA generates code from the input control-flow graphs,

using the alignment only to specify pairs of matching labels and instructions. The

generator then produces code top-down, starting with the control flow graph of the

merged function, then populating with instructions, arguments and labels, and finally

with phi-nodes which maintain the correct flow of data.

Chapter 5 also introduces a novel phi-node coalescing optimisation which is inte-

grated with function merging in order to produce fewer phi-nodes and selections in the

merged functions. This optimisation pairs disjoint values coming from each one of the

input functions so that they can share the same phi-nodes.

7.1.3 Merging Functions One Block at a Time

Both FMSA and SalSSA has a coarse-grained strategy for merging functions. They ap-

ply the quadratic sequence alignment algorithm on the linearised input functions. The

linearisation specifies an ordering for all the basic blocks from a function, producing

a sequence with all the instructions of the function in that order. Different orderings

of the basic blocks would result in different alignments and therefore different merged

functions. Moreover, they also apply a profitability analysis once the merged functions

has been completely generated, either accepting or rejecting it completely.

Chapter 6 introduces HyFM, our function merging technique that works on the

basic block level. Since each basic block already represents a sequence of instruc-

tions, HyFM does not require a linearisation step. It pairs similar basic blocks using a

fingerprint-based distance metric. These pairs are aligned either using the Needleman-

Wunsch algorithm or a linear one that works in a pairwise manner.

Chapter 6 also introduces a multi-tier profitability analysis. Before generating the

merged function, it uses a cost model to analyse the alignment for each pair of basic

blocks. Alignments deemed unprofitable are discarded. This fine-grained tier of the

profitability analysis improves the quality of the merged functions produced by HyFM,

but also enables it to bail out early from unprofitable merging attempts.

106 Chapter 7. Conclusion

Overall, HyFM produces similar code size reductions to SalSSA, while running

significantly faster. Unlike our prior techniques, HyFM reduces end-to-end compila-

tion time.

7.2 Future Work

For future work, we plan to focus on improving the ranking mechanism to reduce

compilation time. In order to avoid code size degradation, we also plan to improve

the compiler’s built-in static cost model for code size estimation. We also plan to

work on the linearisation of the candidate functions, allowing instruction reordering

to maximise the number of matches between the functions. Finally, we also plan to

incorporate instruction reordering into function merging to maximise the number of

matches between the functions regardless of the original code layout. It would also be

interesting to investigate the application of phi-node coalescing outside function merg-

ing. We envisage further improvements can be achieved by integrating the function-

merging optimisation into a summary-based link-time optimisation framework, such

as ThinLTO [38] in LLVM. As a future work, we can also analyze the interaction be-

tween function merging and other optimisations such as inlining, outlining, and code

splitting.

7.2.1 Handling Code Reordering at the Instruction Level

All existing function merging techniques rely on the order in which instructions ap-

pear inside the basic blocks and their arrangement, failing to profitably merge equiv-

alent functions when confronted even with the smallest variations on the ordering of

instructions and basic blocks. Figure 7.1a shows an example of two functions that all

existing techniques fail to merge even though they are obviously identical. Our current

technique produces the merged function shown in Figure 7.1b, which is considered

unprofitable as it is unable to reduce code size. Note that all indexing computation

is duplicated, including the increment operation, resulting in a merged function that

is unnecessarily bigger than the two original functions together. We need more pow-

erful graph, rather than sequence, alignment techniques to better identify and merge

differently ordered but semantically equivalent code.

7.2. Future Work 107

int foo(int *V, int i){
 int t0 = V[i];
 int t1 = V[i+1];
 return (t0+t1);
}

int bar(int *V, int i){
 int t1 = V[i+1];
 int t0 = V[i];
 return (t0+t1);
}

(a) Two equivalent functions.
int m_foo_bar(int fid, int *V, int i) {
 int idx0 = fid?i:(i+1);
 int var0 = V[idx0];
 int idx1 = fid?(i+1):i;
 int var1 = V[idx1];
 return (var0+var1);
}

(b) Merged function currently produced by FMSA.

Figure 7.1: Example of how even trivial reordering is poorly handled by the existing

solutions.

7.2.2 Merging Across All Scopes

Existing techniques are limited to one particular scope. While function merging is

applied only to whole functions, function outlining is commonly applied at the basic

block level. However, equivalent code can be found within or across functions, which

themselves may reside in the same source file or be spread across multiple source

files. Therefore, we need to develop a novel unified optimisation capable of merging

semantically equivalent code that can span anything between a single basic block up

to a whole function. This unification has the extra benefit of also addressing the phase

ordering problem by coordinating the merge operations on different scopes.

7.2.3 Multi-Function Merging

The function merging variants proposed in this thesis may produce different results

when applied on the same list of functions but on a different order. In other words,

they are non-associative operations. The fingerprint-based pairing of both functions

and basic blocks are greedy and therefore easily affected by the order of the pairing

decisions. Similarly, in a chain of merged functions, the sequence alignment can also

be affected by the order in which these functions are merged.

As future work, we plan to investigate multi-function merging where we can better

investigate the non-associativity property. By merging multiple functions at once, we

can reduce the impact of local decisions that arise while performing a chain of function

merging. Multi-function merging would also allow us to unify the function identifier

for all functions being merged with a single integer parameter.

108 Chapter 7. Conclusion

7.2.4 Scaling for Large Programs

Although our optimisation achieves very good results in terms of code compression,

it is still unable to handle large programs in a real scenario. Its time complexity and

memory usage requirements would prevent it from optimizing large programs such as

web browsers, Clang/LLVM, and operating systems, as these programs tend to have

many functions with several thousands of instructions. Link-time optimisation (LTO)

makes this matter even worse by optimizing the code after the whole program has

been linked into a single module, imposing a huge pressure on memory usage and

compilation time.

The optimisation of different translation units can be distributed across different

machines and merge operations locally performed in parallel. An important challenge

that needs to be addressed concerns ranking and merging functions that reside in dif-

ferent translation units. However, parallel LTO is essential to enable its use on real pro-

grams while keeping the memory usage and compilation time acceptable. We believe

these improvements can be achieved by integrating the function-merging optimisation

with a summary-based link-time optimisation framework, such as ThinLTO in LLVM.

7.2.5 Powered by Deep Learning

One can investigate the use of deep learning to align two functions and better identify-

ing what can be merged. Sequence alignment focusses only on maximizing the number

of merged instructions, without necessarily minimizing the number of operand selec-

tions or branches. A smarter approach that understands how instructions interact with

each other would be very beneficial.

7.2.6 Avoiding Performance Overheads

For many real applications, it is desirable to achieve a good balance between code

size and performance. Preliminary results show that performance degradation can be

completely avoided by using profiling to guide the merging decisions. One can avoid

adding branches inside hot execution paths, therefore avoiding performance penalties.

Although hot code can be merged, it is important to minimise unnecessary branches

when merging hot code. It would be interesting to develop a profile-guided optimisa-

tion that automatically identifies the best trade-off between code-size and performance.

7.2. Future Work 109

7.2.7 Less Memory Usage by JIT

Ahead-of-time and just-in-time (JIT) compilation have completely different require-

ments. Function merging can be used to reduce the amount of memory used by pro-

grams running on a JIT environment. However, our solution must be adapted to the

requirements that are specific to a JIT environment, as JIT compilers have the extra

challenge of having to optimise the code as fast as possible. This would require the

development of completely new algorithms for ranking and aligning functions that are

suitable for this application domain. Another possibility is to exploit the fact multi-

ple programs may be simultaneously running on the same JIT environment and merge

code across different programs, reducing the overall memory usage.

Bibliography

[1] Microsoft Visual Studio. Identical COMDAT folding.

https://msdn.microsoft.com/en-us/library/bxwfs976.aspx, 2020.

[2] The LLVM Compiler Infrastructure. MergeFunctions pass, how it works.

http://llvm.org/docs/MergeFunctions.html, 2020.

[3] Rein Aasland, Charles Abrams, Christophe Ampe, Linda J. Ball, Mark T.

Bedford, Gianni Cesareni, Mario Gimona, James H. Hurley, Thomas Jarchau,

VP Lehto, MA Lemmon, R Linding, BJ Mayer, M Nagai, M Sudol, U Walter,

and SJ Winder. A one-letter notation for amino acid sequences. European Jour-

nal of Biochemistry, 5(2):151–153, 1968.

[4] T. M. Ahmed, W. Shang, and A. E. Hassan. An empirical study of the copy and

paste behavior during development. In 2015 IEEE/ACM 12th Working Confer-

ence on Mining Software Repositories, pages 99–110, 2015.

[5] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang,

Zheng Zhang, Webb Miller, and David J. Lipman. Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs. Nucleic Acids

Research, 25(17):3389–3402, 09 1997.

[6] Rafael Auler, Carlos Eduardo Millani, Alexandre Brisighello, Alisson Linhares,

and Edson Borin. Handling IoT platform heterogeneity with COISA, a compact

OpenISA virtual platform. Concurrency and Computation: Practice and Experi-

ence, 29(22):e3932, 2017.

[7] Preston Briggs and Keith D. Cooper. Effective partial redundancy elimination. In

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

Design and Implementation, PLDI ’94, pages 159–170, New York, NY, USA,

1994. ACM.

111

112 Bibliography

[8] Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value numbering.

Software: Practice and Experience, 27(6):701–724, 1997.

[9] Philip Brisk, Adam Kaplan, and Majid Sarrafzadeh. Area-efficient instruction set

synthesis for reconfigurable system-on-chip designs. In Proceedings of the 41st

Annual Design Automation Conference, DAC ’04, page 395–400, New York, NY,

USA, 2004. Association for Computing Machinery.

[10] Humberto Carrillo and David Lipman. The multiple sequence alignment problem

in biology. SIAM J. Appl. Math., 48(5):1073–1082, October 1988.

[11] Milind Chabbi, Jin Lin, and Raj Barik. An experience with code-size optimiza-

tion for production iOS mobile applications. In IEEE/ACM International Sympo-

sium on Code Generation and Optimization (CGO), pages 1–12, US, 2021. IEEE

Press.

[12] John Cocke. Global common subexpression elimination. In Proceedings of a

Symposium on Compiler Optimization, pages 20–24, New York, NY, USA, 1970.

ACM.

[13] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. Divergence analysis

and optimizations. In 2011 International Conference on Parallel Architectures

and Compilation Techniques, pages 320–329, Oct 2011.

[14] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An

efficient method of computing static single assignment form. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’89, pages 25–35, New York, NY, USA, 1989. ACM.

[15] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October

1991.

[16] Krzysztof Czarnecki. Generative programming-principles and techniques of soft-

ware engineering based on automated configuration and fragment-based compo-

nent models. PhD thesis, Verlag nicht ermittelbar, 1999.

[17] Christophe de Dinechin. C++ exception handling. IEEE Concurrency, 8(4):72–

79, October 2000.

Bibliography 113

[18] Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler

techniques for code compaction. ACM Trans. Program. Lang. Syst., 22(2):378–

415, March 2000.

[19] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen

White, and Steven L. Salzberg. Alignment of whole genomes. Nucleic Acids

Research, 27(11):2369–2376, 01 1999.

[20] Dirk Draheim, Christof Lutteroth, and Gerald Weber. An analytical comparison

of generative programming technologies. 2004.

[21] A. Dreweke, M. Worlein, I. Fischer, D. Schell, T. Meinl, and M. Philippsen.

Graph-based procedural abstraction. In International Symposium on Code Gen-

eration and Optimization (CGO’07), pages 259–270, March 2007.

[22] Tobias J.K. Edler von Koch, Igor Böhm, and Björn Franke. Integrated instruc-

tion selection and register allocation for compact code generation exploiting

freeform mixing of 16- and 32-bit instructions. In Proceedings of the 8th An-

nual IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO ’10, pages 180–189, New York, NY, USA, 2010. ACM.

[23] Tobias J.K. Edler von Koch, Björn Franke, Pranav Bhandarkar, and Anshuman

Dasgupta. Exploiting function similarity for code size reduction. In Proceedings

of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools

for Embedded Systems, LCTES ’14, pages 85–94, New York, NY, USA, 2014.

ACM.

[24] CD Edwards Jr, MJ Amato, JD Baker, NJ Barba, J Balaram, EJ Brandon,

P Briggs, BD Davis, JC Day, A Freeman, et al. Emerging capabilities for mars

exploration. Planetary Science Decadal, 2020.

[25] Sebastiana Etzo and Guy Collender. The mobile phone ‘revolution’ in Africa:

Rhetoric or reality? African Affairs, 109(437):659–668, 2010.

[26] L. Ghica and N. Tapus. Optimized retargetable compiler for embedded processors

- gcc vs llvm. In 2015 IEEE International Conference on Intelligent Computer

Communication and Processing (ICCP), pages 103–108, 2015.

[27] Osamu Gotoh. An improved algorithm for matching biological sequences. Jour-

nal of Molecular Biology, 162(3):705–708, 1982.

114 Bibliography

[28] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown. MiBench: A free, commercially representative embedded benchmark

suite. In Proceedings of the Fourth Annual IEEE International Workshop on

Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, Dec 2001.

[29] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Hol-

man, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the

web up to speed with webassembly. In Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2017,

page 185–200, New York, NY, USA, 2017. Association for Computing Machin-

ery.

[30] Waqar Haque, Alex Aravind, and Bharath Reddy. An efficient algorithm for local

sequence alignment. In 2008 30th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pages 1367–1372, 2008.

[31] Waqar Haque, Alex Aravind, and Bharath Reddy. Pairwise sequence alignment

algorithms: A survey. In Proceedings of the 2009 Conference on Information

Science, Technology and Applications, ISTA ’09, page 96–103, New York, NY,

USA, 2009. Association for Computing Machinery.

[32] Stuart L. Hart and Clayton M. Christensen. The great leap: Driving innovation

from the base of the pyramid. MIT Sloan Management Review, 44(1):51–56, Fall

2002.

[33] Glenn Hickey and Mathieu Blanchette. A probabilistic model for sequence

alignment with context-sensitive indels. In Proceedings of the 15th Annual In-

ternational Conference on Research in Computational Molecular Biology, RE-

COMB’11, pages 85–103, Berlin, Heidelberg, 2011. Springer-Verlag.

[34] Desmond G Higgins and Paul M Sharp. Fast and sensitive multiple sequence

alignments on a microcomputer. Bioinformatics, 5(2):151–153, 1989.

[35] D. S. Hirschberg. A linear space algorithm for computing maximal common

subsequences. Commun. ACM, 18(6):341–343, June 1975.

[36] P. Jablonski and D. Hou. Aiding software maintenance with copy-and-paste

clone-awareness. In 2010 IEEE 18th International Conference on Program Com-

prehension, pages 170–179, 2010.

Bibliography 115

[37] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K.

Smith, Collin Winter, and Emerson Murphy-Hill. Advantages and disadvantages

of a monolithic repository: A case study at google. In Proceedings of the 40th In-

ternational Conference on Software Engineering: Software Engineering in Prac-

tice, ICSE-SEIP ’18, page 225–234, New York, NY, USA, 2018. Association for

Computing Machinery.

[38] Teresa Johnson, Mehdi Amini, and Xinliang David Li. Thinlto: Scalable and

incremental lto. In Proceedings of the 2017 International Symposium on Code

Generation and Optimization, CGO ’17, page 111–121. IEEE Press, 2017.

[39] S. L. Keoh, S. S. Kumar, and H. Tschofenig. Securing the internet of things:

A standardization perspective. IEEE Internet of Things Journal, 1(3):265–275,

June 2014.

[40] Miryung Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of

copy and paste programming practices in oopl. In Proceedings. 2004 Interna-

tional Symposium on Empirical Software Engineering, 2004. ISESE ’04., pages

83–92, 2004.

[41] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimina-

tion. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation, PLDI ’94, pages 147–158, New York,

NY, USA, 1994. ACM.

[42] J. Kolek, Z. Jovanović, N. Šljivić, and D. Narančić. Adding micromips backend

to the llvm compiler infrastructure. In 2013 21st Telecommunications Forum

Telfor (TELFOR), pages 1015–1018, 2013.

[43] Joseph B. Kruskal. An overview of sequence comparison: Time warps, string

edits, and macromolecules. SIAM Review, 25(2):201–237, 1983.

[44] Doug Kwan, Jing Yu, and B. Janakiraman. Google’s C/C++ toolchain for smart

handheld devices. In Proceedings of Technical Program of 2012 VLSI Technol-

ogy, System and Application, pages 1–4, April 2012.

[45] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program

analysis transformation. In Proceedings of the International Symposium on Code

Generation and Optimization (CGO), pages 75–86, 2004.

116 Bibliography

[46] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle,

Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasilache, and Oleksandr

Zinenko. Mlir: A compiler infrastructure for the end of moore’s law. arXiv

preprint, 2020.

[47] Rahman Lavaee, John Criswell, and Chen Ding. Codestitcher: Inter-procedural

basic block layout optimization. In Proceedings of the 28th International Con-

ference on Compiler Construction, CC 2019, page 65–75, New York, NY, USA,

2019. Association for Computing Machinery.

[48] Christopher Lee, Catherine Grasso, and Mark F. Sharlow. Multiple sequence

alignment using partial order graphs. Bioinformatics, 18(3):452–464, 03 2002.

[49] David J. Lipman and William R. Pearson. Rapid and sensitive protein similarity

searches. Science, 227(4693):1435–1441, 1985.

[50] Martin Liška. Optimizing large applications. arXiv preprint arXiv:1403.6997,

2014.

[51] Gábor Lóki, Ákos Kiss, Judit Jász, and Árpád Beszédes. Code factoring in GCC.

In Proceedings of the 2004 GCC Developers’ Summit, pages 79–84, 2004.

[52] Webb Miller and Eugene W. Myers. A file comparison program. Software: Prac-

tice and Experience, 15(11):1025–1040, 1985.

[53] N. Moreano, E. Borin, Cid de Souza, and G. Araujo. Efficient datapath merging

for partially reconfigurable architectures. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 24(7):969–980, 2005.

[54] David W. Mount. Bioinformatics: Sequence and Genome Analysis, volume 564.

Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.

[55] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[56] I. Neamtiu and T. Dumitraş. Cloud software upgrades: Challenges and oppor-

tunities. In 2011 International Workshop on the Maintenance and Evolution of

Service-Oriented and Cloud-Based Systems, pages 1–10, 2011.

Bibliography 117

[57] Saul B. Needleman and Christian D. Wunsch. A general method applicable to

the search for similarities in the amino acid sequence of two proteins. Journal of

Molecular Biology, 48(3):443 – 453, 1970.

[58] Vinı́cius S. Pacheco, Thaı́s R. Damásio, Luı́s F. W. Góes, Fernando M. Q. Pereira,

and Rodrigo C. O. Rocha. Inlining for code size reduction. In Programming

Languages: Brazilian Symposium, SBLP 2021, Proceedings. Springer, 2021.

[59] Pedro Plaza, Elio Sancristobal, German Carro, Manuel Castro, and Elena Ruiz.

Wireless development boards to connect the world. In Michael E. Auer and

Danilo G. Zutin, editors, Online Engineering & Internet of Things, pages 19–

27, Cham, 2018. Springer International Publishing.

[60] A. Pohl, B. Cosenza, and B. Juurlink. Cost modelling for vectorization on

ARM. In 2018 IEEE International Conference on Cluster Computing (CLUS-

TER), pages 644–645, Sept 2018.

[61] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luı́s F. W. Góes,

and Timothy Mattson. Super-Node SLP: Optimized vectorization for code se-

quences containing operators and their inverse elements. In Proceedings of the

2019 IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO 2019, pages 206–216, Piscataway, NJ, USA, 2019. IEEE Press.

[62] Vasileios Porpodas, Rodrigo C. O. Rocha, and Luı́s F. W. Góes. Look-ahead SLP:

Auto-vectorization in the presence of commutative operations. In Proceedings of

the 2018 International Symposium on Code Generation and Optimization, CGO

2018, pages 163–174, New York, NY, USA, 2018. ACM.

[63] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and

Hugh Leather. Function merging by sequence alignment. In Proceedings of the

2019 IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO 2019, pages 149–163, Piscataway, NJ, USA, 2019. IEEE Press.

[64] Rodrigo C. O. Rocha, Pavlos Petoumenos, Zheng Wang, Murray Cole, and Hugh

Leather. Effective function merging in the ssa form. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI 2020, page 854–868, New York, NY, USA, 2020. Association for

Computing Machinery.

118 Bibliography

[65] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes. Sourcerercc:

Scaling code clone detection to big-code. In 2016 IEEE/ACM 38th International

Conference on Software Engineering (ICSE), pages 1157–1168, May 2016.

[66] Ulrik Pagh Schultz, Kim Burgaard, Flemming Gram Christensen, and

Jørgen Lindskov Knudsen. Compiling Java for low-end embedded systems. In

Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler,

and Tool for Embedded Systems, LCTES ’03, pages 42–50, New York, NY, USA,

2003. ACM.

[67] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder. Management of resource

constrained devices in the internet of things. IEEE Communications Magazine,

50(12):144–149, December 2012.

[68] T.F. Smith and M.S. Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[69] SPEC. Standard Performance Evaluation Corp Benchmarks.

http://www.spec.org, 2014.

[70] Sriraman Tallam, Cary Coutant, Ian Lance Taylor, Xinliang David Li, and Chris

Demetriou. Safe ICF: Pointer safe and unwinding aware identical code folding

in gold. In GCC Developers Summit, 2010.

[71] Hans Tiggeler, Tanya Vladimirova, Daixun Zheng, and Jiri Gaisler. Experiences

designing a system-on-a-chip for small satellite data processing and control. In

Proceedings of International Conference on Military and Aerospace, 2000.

[72] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code with linked

editing. In 2004 IEEE Symposium on Visual Languages - Human Centric Com-

puting, pages 173–180, Sept 2004.

[73] Linda Torczon and Keith Cooper. Engineering A Compiler. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2nd edition, 2007.

[74] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. VW-SLP: Auto-vectorization

with adaptive vector width. In Proceedings of the 27th International Conference

on Parallel Architectures and Compilation Techniques, PACT ’18, pages 12:1–

12:15, New York, NY, USA, 2018. ACM.

Bibliography 119

[75] A. Varma and S. S. Bhattacharyya. Java-through-C compilation: an enabling

technology for Java in embedded systems. In Proceedings Design, Automation

and Test in Europe Conference and Exhibition, volume 3, pages 161–166 Vol.3,

Feb 2004.

[76] Lusheng Wang and Tao Jiang. On the complexity of multiple sequence alignment.

Journal of Computational Biology, 1(4):337–348, 1994.

[77] V. M. Weaver and S. A. McKee. Code density concerns for new architectures. In

2009 IEEE International Conference on Computer Design, pages 459–464, Oct

2009.

[78] G. Yan, J. Ma, Y. Han, and X. Li. EcoUp: Towards economical datacenter up-

grading. IEEE Transactions on Parallel and Distributed Systems, 27(7):1968–

1981, 2016.

[79] Wuu Yang. Identifying syntactic differences between two programs. Software:

Practice and Experience, 21(7):739–755, 1991.

[80] Marcela Zuluaga and Nigel Topham. Resource sharing in custom instruction set

extensions. In 2008 Symposium on Application Specific Processors, pages 7–13,

2008.

