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Abstract—The OpenACC programming model simplifies the
programming for accelerator devices such as GPUs. Its abstract
accelerator model defines a least common denominator for accel-
erator devices, thus it cannot represent architectural specifics of
these devices without losing portability. Therefore, this general-
purpose approach delivers good performance on average, but
it misses optimization opportunities for code generation and
execution of specific classes of applications. In this paper, we
propose OpenACC extensions to enable efficient code generation
and execution of stencil applications by parallel skeleton frame-
works such as PSkel. Our results show that our stencil extensions
may improve the performance of OpenACC in up to 28% and
45% on GPU and CPU, respectively. Moreover, we show that the
work-partitioning mechanism offered by the skeleton framework,
which splits the computation across CPU and GPU, may improve
even further the performance of the applications in up to 18%.

Keywords—stencil; skeleton frameworks; source-to-source
compilation; CUDA; OpenACC

I. INTRODUCTION

In recent years, Graphics Processing Units (GPUs) have
been used in conjunction with general-purpose CPUs to enable
High Performance Computing (HPC) with high energy effi-
ciency. While modern CPUs use large caches and provide mul-
tiple out-of-order cores with branch prediction and speculation,
GPUs are much richer in floating-point units and provide large
amounts of simple processing cores. Despite being commonly
found in the same hardware platform or even on the same chip,
CPUs and GPUs typically have different application program-
ming interfaces. OpenMP [1], CUDA [2] and OpenACC [3]
are some of the many programming models currently available
for programmers to choose when writing their applications.
Leveraging from these different architectures with parallel pro-
gramming is known to be difficult and error prone, imposing
several challenges to the programmer [4].

Indeed, OpenMP and OpenACC are widespread program-
ming models. They provide an easy way for programmers to
parallelize their codes based on the use of annotations in the
form of compiler directives, which should be added directly
to code regions to enable parallel execution on the target
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platform. Although these directive-based programming models
offer a simpler way of parallelizing code, they may generate
unoptimized codes for certain classes of applications, which
have predictable patterns of data access and communication.
The prior knowledge about these patterns could be used to
achieve high performance in heterogeneous architectures by
minimizing contention for limited resources such as com-
munication and memory bandwidth, keeping data close to
processor and overlapping communications and computations
during data transfers [5].

A common approach that takes advantage of the pattern of
applications is parallel skeletons. Parallel skeletons model and
abstract common parallel programming patterns (computation
and coordination phases), thereby enabling the programmer
to focus on algorithm design, rather than on runtime system
details. Among existing parallel skeletons, the stencil pattern
is critical in many scientific computing domains, including
computational fluid dynamics and image processing. The large
amount of recent work targeting GPU implementations of
high-performance stencil computations highlights the impor-
tance of this pattern [5]–[13].

In this paper, we propose OpenACC extensions to enable
efficient code generation and execution of stencil applications
by parallel skeleton frameworks such as PSkel [14]. These
extensions are designed to expose the stencil pattern to the
compiler and runtime system, enabling specific optimizations
for this class of applications. We developed a source-to-source
compiler that receives as input stencil codes enhanced by the
extended OpenACC annotations, generating optimized parallel
code suitable for heterogeneous architectures.

We show that our approach is able to generate optimized
PSkel source codes for stencil applications using extended
OpenACC annotations. Our results show that our approach
achieves up to 28% and 45% improvement over OpenACC
on GPU and CPU, respectively. Moreover, we show that the
work-partitioning mechanism available in PSkel, which splits
computation across the CPU and the GPU, may improve even
further the performance achieved by the GPU up to 18%.

This paper is organized as follows. Section II provides
background on the stencil pattern and high-level programming
approaches for GPUs. Section III presents the proposed stencil



directives. Section IV describes the compilation process of the
stencil annotations into PSkel code. In Section V we present
experimental results and demonstrate the relevance of our
proposed approach. Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide background on the stencil
parallel pattern and discuss past efforts in providing high-level
abstractions for CPU-GPU programming.

A. The stencil pattern

Structured parallel programs follow patterns of computation
and coordination. Computation represents the application’s
logic and data flow control, whereas coordination handles
parallelism, concurrency, communication, and load balancing.

An important parallel programming pattern is stencil [4].
The stencil pattern operates on n-dimensional data structures,
using an input data value and its neighbors to compute the
corresponding output data element. Specifically, a sliding win-
dow (also called mask) scans the entire set of input data and
produces output data using a stencil function. The mask’s size
corresponds to a specific number of neighbors of each element
of the input data. The stencil function performs computations
using the mask and the neighbors to produce a corresponding
element in the output data. The stencil application repeats this
process on every element of the input data, except those at its
limits (border cells). In case of iterative stencil applications,
the whole procedure described above is repeated in each
iteration (a.k.a. timestep). At the end of an iteration a swap
operation occurs, since the output data of an iteration t must
be used as the input data of an iteration t+ 1.

The code fragment written in Code 1 exemplifies a stencil
computation performed in the Jacobi’s method [15]. In this
example, the variable timesteps holds the number of
iterations that must be computed whereas variables alpha
and beta are input parameters. We also assume that the input
and output data (A and B) are 2D matrices of size M*N stored
as 1D arrays. A more detailed description of this method is
provided in Section V-A.

B. High-level GPU and CPU-GPU programming frameworks

Besides the existence of directive-based programming mod-
els, there has been extensive work in providing high-level
abstractions for simplifying GPU programming. For example,
previous works have proposed data-structure and control-
flow abstractions via annotated code, compiler directives and
new and extended programming languages [9], [10], [16].
In addition to providing high-level abstractions, other works
have produced portable parallel code and improved the overall
workload performance by exploiting parallel programming
patterns and tuning the runtime system, hardware, and/or
applications. Steuwer et al., proposed SkelCL, an OpenCL-
based skeleton library for multi-GPU programming [11]. In a
similar approach, Enmyren & Kessler proposed SkePU [7], a
C++ template library that provides genereric containers and
implements several skeletons for GPU and CPU execution.

Ernstsson et al., [17] improved SkePU to provide a flexible and
type-safe programming interface focused on C++11 and vari-
adic templates. The new programming interface is compatible
to any C++11 compiler for sequential code generation while
a source-to-source tool transforms the code to target OpenMP,
OpenCL and CUDA. In a similar approach to our work,
Nguteren & Corportal proposed Bones, a source-to-source
compiler based on algorithmic skeletons [18]. It transforms
annotated C code to parallel CUDA or OpenCL using a
translator written in Ruby. The skeleton set is based on a well-
defined grammar and vocabulary. However, Bones places strict
limitations on the coding style of input programs.

Due to the importance of the stencil pattern, some of those
works focused specifically on optimizing stencil applications.
For example, PATUS generates and provides auto-tuning ab-
stractions for stencil programs on CPU-GPU systems [6].
The framework provides a domain specific language for ker-
nel description and bandwidth-saving mechanisms, which the
programmer can use to draw parallelization and optimization
strategies. PSkel provides similar abstractions, with stencil ker-
nels defined in C++ template functions and enables the fraction
of computations executed in CPU or GPU to be specified
at runtime [14]. Holewinski et al., modified the compiler to
automatically reduce memory bandwidth requirements for the
GPU in exchange for redundant computations [10]. PARTANS
generates optimized OpenCL code and automatically sched-
ules stencil computations across GPUs based on characteristics
of the stencil function, problem size, GPU heterogeneity, and
PCI-express settings [8].

C. The PSkel stencil framework

PSkel is a framework for high-level programming stencil
computations, based on the concept of parallel skeletons,
which offers parallel execution support on heterogeneous
architectures (CPU and GPU). PSkel offers a single pro-
gramming interface, decoupled from the runtime back-ends,
that releases programmers from the responsibility of writing
boiler-plate code for parallel stencil computation. Instead,
programmers are responsible for implementing a kernel de-
scribing solely the stencil computation, while the framework
translates the abstractions described into low-level parallel
C++ code, compatible with OpenMP and NVIDIA CUDA,
where synchronization, memory management and data transfer
is transparently handled by the framework [14].

Given the well-defined structure of skeletons, PSkel is able
to perform several optimizations, including the use of fast
shared memory of GPUs by means of overlapped trapezoidal
tiling techniques. Tiling partitions the iteration space into
smaller regular blocks, called tiles. When tiling a stencil
computation, neighborhood dependencies must be considered
before partitioning the data into smaller blocks. One of the
main solutions for handling neighborhood dependencies is via
overlapped blocks, resulting in redundant data and computa-
tion per tile [10], [12], [13].

Another optimization provided by the PSkel runtime is the
partitioning of the stencil input data and the simultaneous



1 void jacobi(float* A, float* B, int M, int N,
2 float alpha, float beta, int timesteps){
3 for(int t = 0; t < timesteps; t++){
4 for(int y = 1; y < M-1; y++)
5 for(int x = 1; x < N-1; x++)
6 B[y*N+x] = alpha*(A[(y+1)*N+x] + A[(y-1)*N+x] +
7 A[y*N+(x+1)] + A[y*N+(x-1)] + beta);
8 /* data swap */
9 for(int y = 1; y < M-1; y++)
10 for(int x = 1; x < N-1; x++)
11 A[y*N+x] = B[y*N+x];
12 }
13 }

Code 1. Jacobi stencil computation.

execution of each partition on both CPU and GPU, through
a work-partitioning mechanism. Some platforms can take
benefit from this optimization, improving even further the
performance os applications as shown in Section V-B3.

The PSkel Application Programming Interface (API) pro-
vides templates for manipulating input and output data via
template classes for n-dimensional arrays, called Array,
Array2D, and Array3D. The n-dimensional array abstrac-
tions provide methods that encapsulate the data management
procedures, such as memory allocation, memory copy, and
data transfer (e.g., communication between host and GPU).
Specifically to stencil parallel pattern, it also provides ab-
stractions for specifying stencil masks, stencil kernel, and
finally manage stencil execution. The stencil kernel (prototype
function stencilKernel()) is the application’s specific
method that describes the computation performed on each
entry of the input array and must be implemented by the
programmer. Moreover, the API provides a set of classes
(Stencil, Stencil2D, and Stencil3D) for managing
the whole execution of the stencil computation over the input
data, i.e., the stencil class manages the input and output data
during the execution of the stencil kernel over the input entries
and the requested number of iterations. The prototype function
stencilKernel() may also take additional user-defined
parameters incapsulated by a struct (Arguments).

Finally, PSkel provides a method for CPU-only
execution (runIterativeCPU()), GPU-only execution
(runIterativeGPU()) and partitioned execution between
CPU and GPU (runIterativePartitioned()).
Those methods take the number of timesteps as input
parameter. The latter takes an additional one (a number
between 0.1 and 0.9) which indicates how the workload
is partitioned between CPU and GPU. For example, using
runIterativePartitioned(timesteps, 0.6)
means that PSkel will schedule 60% of computation to GPU
and 40% to CPU.

Code 2 exemplifies the use of PSkel framework to compute
Jacobi’s method (Code 1) on GPU. In this code we omitted
the struct declaration for brevity.

D. Directive-based programming models

The directive-based approach of OpenMP and OpenACC
provides a simple, yet powerful way for programmers to
parallelize their code. Users typically need to identify portions
of code that are profitable for parallel execution and annotate

1 __parallel__ void
2 stencilKernel(Array2D<float> A, Array2D<float> B,
3 struct Arguments args, int x, int y){
4 B(x,y) = args.alpha * (A(x,y+1) + A(x,y-1) +
5 A(x+1,y) + A(x-1,y) + args.beta);
6 }
7
8 void jacobi(float* A, float *B, int M, int N,
9 float alpha, float beta, int timesteps){
10 Array2D<float> input(A,M,N);
11 Array2D<float> output(B,M,N);
12
13 struct Arguments args(alpha, beta);
14
15 Stencil2D<Array2D<float>, struct Arguments>
16 jacobi(input,output,args);
17 jacobi.runIterativeGPU(timesteps);
18 }

Code 2. PSkel Stencil kernel function.

them using appropriate directives. For instance, code sections
containing nested loops are usually good candidates for par-
allelization on multicores or GPUs, and are annotated us-
ing #pragma omp parallel for and #pragma acc
parallel loop directives for OpenMP and OpenACC,
respectively. Nevertheless, these directive-based approaches
have some shortcomings in terms of the generated code.

Consider the code fragment written in Code 1. A simple
way to execute this on GPU is to annotate it with OpenACC
pragmas as shown in Code 3. An OpenACC compiler analyzes
the annotated code and transparently maps the loops to GPU
threads according to an internal cost model. However, the
compiler may not generate very optimized binaries for such
codes. This is because architectural-specific features such as
software managed caches (known as shared memory in the
CUDA programming model) are usually not properly exploited
by the compiler in the code generation [19].

III. OPENACC STENCIL EXTENSIONS

In this section, we present the OpenACC extensions for the
stencil pattern. We propose a stencil directive to inform
the compiler about specific features of the stencil parallel
skeleton as well as for its execution on a heterogeneous
architecture. The syntax of the new OpenACC stencil
directive proposed in this paper is

#pragma acc stencil clause-list

where clause-list is a list of all the following clauses, except
args which is not mandatory. A var-list is a comma-separated
list of one or more array names (vars) with their respective
dimensions:

device( device-type[, float] )
iterations( int )
input( var[int[, int[, int]]] )
output( var[int[, int[, int]]] )
args( var-list )

The use of the stencil directive as well as its possible
clauses are shown in Code 4 on lines 3 and 4. The remaining
code is exactly the same as shown on lines 3 to 21 of Code 3.

The device clause defines the target architecture for the
execution of the stencil computation. The device-type can be



1 void jacobi(float* A, float* B, int M, int N,
2 float alpha, float beta, int timesteps){
3 #pragma acc data copy(A[0:M*N]) create(B[0:M*N])
4 {
5 for(int t = 0; t < timesteps; t++){
6 #pragma acc parallel loop
7 for(int y = 1; y < M-1; y++){
8 #pragma acc loop independent
9 for(int x = 1; x < N-1; x++)
10 B[y*N+x] = alpha*(A[(y+1)*N+x] + A[(y-1)*N+x] +
11 A[y*N+(x+1)] + A[y*N+(x-1)] + beta);
12 }
13 /* data swap */
14 #pragma acc parallel loop
15 for(int y = 1; y < M-1; y++){
16 #pragma acc loop independent
17 for(int x = 1; x < N-1; x++)
18 A[y*N+x] = B[y*N+x];
19 }
20 }
21 }
22 }

Code 3. Jacobi stencil code with OpenACC annotations.

either cpu or gpu, since the PSkel runtime system supports
execution on CPU and GPU. For a partitioned execution
between CPU and GPU, the percentage of the input data
processed by the GPU or CPU must be informed (float)
and must be between 0.1 and 0.9. In Code 4, the whole
computation will be performed by the GPU.

The iterations clause defines the number of iterations
performed by the stencil. Its value must be informed by the
same variable that bounds the following loop of the stencil
iterations. In Code 4, the number of iterations are defined by
the variable timesteps that is used as a bound to the for
loop on line 5 of Code 3.

The input and output clauses define, respectively, the
stencil input and output data. Their values must be set to their
corresponding array pointers used in the stencil computations,
and their dimensions must be informed, indicating their re-
spectively height, width and/or depth (at least the width must
be informed). If the remaining dimensions are not informed,
the compiler uses the default value of 1. Their value must be
informed by the same variables that bounds the stencil parallel
loop execution. In Code 4, width and height are informed by
M and N variables, respectively. These variables are used as
loop bounds on lines 7 and 9 of Code 3.

It is worth noting that there is no need to inform in the
stencil directive any primitive data variables used in the
stencil computation. The proposed source-to-source compiler
presented in the next section detects if the stencil computation
makes use of other variables to be able to generate a correct
and equivalent PSkel code. For instance, in Code 3, alpha
and beta variables used in the stencil computation will be
accessed from a struct in the resulting PSkel source code.
However, if the stencil computation uses additional data such
as dynamic arrays, their pointers and dimensions must be
informed using the args clause, which is similar to the
input and output clauses.

IV. SOURCE-TO-SOURCE COMPILER

We propose a source-to-source compiler that takes an input
C/C++ code, which is enhanced by extended OpenACC an-

1 void jacobi(float* A, float* B, int M, int N,
2 float alpha, float beta, int timesteps){
3 #pragma acc stencil device(gpu) iterations(timesteps) \
4 input(A[M,N]) output(B[M,N])
5 {
6 /* OpenACC code (lines 3 to 21 of Code 3) */
7 }
8 }

Code 4. Jacobi stencil code with extended OpenACC annotations.

notations, to take advantage of heterogeneous architectures as
discussed in Section III. Since PSkel provides the necessary
runtime system for executing stencil computations on hetero-
geneous architectures, the output of the source-to-source com-
piler is a PSkel C/C++ code targeted for multicore processors
or CUDA-capable GPUs. In this section we discuss the details
of the source code generation. Figure 1 shows the diagram of
the compilation process which consists of four major stages.
Our source-to-source compiler is currently implemented in
Python using pycparser1 to aid the compilation steps.

The Frontend Parser receives an input C/C++ source
code, enhanced by extended OpenACC annotations, which
include a stencil specific directive and its clauses. Then, it
extracts the functions composed by loops annotated with the
aforementioned directive and produces an annotated Abstract
Syntax Tree (AST) for each given function.

The Extended OpenACC Preprocessor traverses the sten-
cil constructions using the extended OpenACC annotations.
For each stencil construction found, it extracts information
from the directive that provides relevant information for iden-
tifying the target device, number of stencil iterations, and
the n-dimensional input and output arrays, as well as their
dimensions and sizes.

Informed by stencil directive, the Loop Analyzer validates
the semantics of nested loops, annotating the AST nodes for
code generation. It first verifies that the nested loops are affine,
with well defined induction variables, by means of a symbolic
induction variable analysis using scalar evolution [20], [21].
An induction variable is a monotonic variable that increases
(or decreases) by a fixed amount on every iteration of a
loop. It can also be a linear function of another induction
variable, also called induction expression. Scalar evolution is
used primarily to symbolically analyze expressions involving
induction variables in loops.

The Loop Analyzer expects nested loops with induction
variables bounded by the sizes of the n-dimensional arrays.
The outer-most loop can also be a loop responsible for count-
ing the stencil iterations. We use induction variable analysis
and data dependence analysis [22] in order to identify if the
outer-most loop is responsible for the stencil iterations. For this
loop, the induction variable must only be used for controlling
the loop iterations, i.e., the induction variable must not be
used inside the loop body. The Loop Analyzer also verifies
data dependencies regarding the input and output arrays. If the
Loop Analyzer is unable to fully verify all the aforementioned
prerequisites, we fall back to standard OpenACC annotations.

1https://github.com/eliben/pycparser



Fig. 1. Overall architecture of the compilation process.

In addition to the verification of the previously defined
prerequisites, the Loop Analyzer also tries to infer the range
of the stencil neighborhood. If this neighborhood information
is present, the PSkel runtime framework is able to perform
further optimisations [13]. Given that we know the size of the
array dimensions, the Loop Analyzer uses scalar evolution to
perform delinearization of the array access expressions (sub-
scripts) [23]–[25]. After the array subscripts are delinearized,
it tries to infer the neighborhood range by identifying the
maximum displacement. Although this analysis works well in
well-defined array subscripts, such as the example shown in
Code 1, it is still limited and not always possible.

The Source Code Generator traverses the annotated AST
producing C/C++ code, transforming loops annotated with
stencil directives into PSkel equivalent code. For instance, a
code equivalent to Code 2 is generated from Code 3 with
the stencil annotations of Code 4. The body of the inner-
most loop is extracted into an implementation of the stencil
kernel function, the prototype function stencilKernel()
in PSkel (lines 1-6 of Code 2), and the original AST node of
the whole stencil construction is replaced by a block of PSkel
code that performs the setup of the stencil runtime system and
the launch of the iterative stencil execution on the specified
devices. The PSkel setup code consists of lines 10-17 of the
example presented in Code 2. Array pointers are wrapped by
PSkel n-dimensional array abstractions (lines 10 and 11) and
the setup code, after wrapping the array pointers, instantiates a
data structure for internalizing extra data variables necessary
for the stencil computation. Every variable used inside the
stencil nested loops, which was defined in a prior scope, is
considered an extra argument during code transformation, and
therefore passed to the stencil kernel function by the argument
data structure. In Code 2, these extra variables are the alpha
and beta variables (line 13). Finally, the stencil abstraction
is instantiated (lines 15 and 16) for managing the execution
of the iterative stencil computation (line 17).

The final stage invokes a System Compiler (e.g., NVCC
for CUDA back-end, GCC with OpenMP for a multicore

TABLE I
SYSTEM SETTINGS.

Features
Platform 1 Platform 2

CPU GPU CPU GPU

Manufac. Intel NVidia Intel NVidia
Model Xeon E5-2620 Tesla K20 Xeon E5-5645 Quadro 2000
Clock 2.3 GHz 706 MHz 2.4 GHz 1.25 GHz
Cores 6 + HT 2496 2× 6 192
LLC size 15 MB 1.31 MB 12 MB 262 KB
DRAM 32 GB 5 GB 32 GB 1 GB

back-end, etc.) to generate the target object code. Input to
this stage is the PSkel runtime library and the PSkel-enabled
C/C++ source code previously generated by the source-to-
source compiler.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental setup and re-
sults. Table I presents the settings of two computing platforms
used throughout the experiments, both running CentOS 6.7
with NVIDIA CUDA version 7.5, GCC version 4.9.2, and PGI
Accelerator compiler version 16.5, which supports OpenACC
2.5. We used Platform 1 to evaluate the performance gain
when using the proposed stencil annotations compared to
a pure OpenACC implementation, as described in Sections
V-B1 and V-B2. Platform 2 is used to demonstrate the extra
performance gain that can be obtained when using the PSkel
work-partitioning feature, described in Section V-B3.

A. Stencil Applications

We considered three 2D stencil applications from different
domains. Game of Life (GoL) is a cellular automaton imple-
menting Conway’s Game of Life [26] as a stencil application.
The automaton is represented as a matrix where each element
is a living or a dead individual and the stencil mask deter-
mines the interaction between an individual and its neighbors.
Over the course of a pre-defined number of iterations, each
individual analyzes the state of its neighbors to determine its
own state in the next iteration according to GoL rules.

The Jacobi method is an iterative method for solving matrix
equations [15]. The method is guaranteed to converge if the
input matrix is strictly or irreducibly diagonally dominant, i.e.,
|ui,i| >

∑
j 6=i |ui,j |, for all i. Equation 1 defines the computa-

tion performed at each step of the Jacobi’s iterative method for
solving 2-dimensional Poisson’s elliptical discretized equation,
as shown in Code 1. The approximate solution is computed
by discretizing the problem in a matrix of n×n evenly spaced
points. Poisson’s equation [15] is a partial differential equation
of elliptic type largely used in theoretical physics.

u′i,j =
ui±1,j + ui,j±1 + h2fi,j

4
(1)

At each step, the new value of ui,j is obtained by averaging its
neighbors with h2fi,j , where h = 1

n+1 and fi,j = f(ih, jh),
for a given function f .
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Fig. 2. Execution times of the original OpenACC code and the generated PSkel code from the OpenACC stencil extensions.

CloudSim simulates cloud dynamics based on cellular au-
tomaton [27]. The mathematical model uses neighborhoods of
five cells. The model uses three weather properties: condensed
cloud water particles, temperature and winds. The transition
rules are based on the thermodynamic principles and weather
concepts. The number of condensed cloud water particles in
a cell is defined as a function of its current temperature.
These condensed cloud water particles are displaced to a
neighborhood in accordance with the wind direction. The cell
temperature behavior is made from thermodynamic principles
that provide a heat transfer between neighborhood cells.

B. Performance Evaluation

In this section, we compare the performance of the imple-
mentations with the original OpenACC code to the generated
code from our source-to-source compiler, using the PSkel
library as the back-end for stencil execution. Figure 2 shows
the execution time for each of the three stencil applications
executing on CPU and GPU. For the GPU execution, we
only consider kernel computing time (i.e., we disconsider
the time spent in memory transfers). The reported values
represent the average of 10 executions of each application with
a fixed number of iterations of 50. The results presented in
Sections V-B1 and V-B2 were all executed in Platform 1.

1) CPU Performance: For the GoL application, PSkel has
a better performance than OpenACC for all input data sizes,
achieving up to 45% of improvement over OpenACC. The
main reason for that is presented in Table II, which shows
the last-level cache (LLC) miss ratio for the execution of
the three stencil applications used in this paper. As it can be
noticed, OpenACC has a higher LLC cache miss ratio while
PSkel back-end maintains its consistent data cache miss ratio
behavior, achieving a better performance.

For the Jacobi application, OpenACC shows better perfor-
mance than PSkel back-end for small input sizes (53.35%

TABLE II
CPU LLC DATA CACHE MISS RATIO COMPARISON BETWEEN PGI

OPENACC COMPILER GENERATED CODE AND PSKEL GENERATED CODE.

API Input
LLC Miss Ratio (%)

GoL Jacobi CloudSim

OpenACC

512 7.74 9.57 4.76
1024 1.40 1.79 1.10
2048 26.62 27.52 29.49
4096 38.19 34.51 32.38
8192 32.27 34.33 30.16

PSkel

512 7.31 6.35 6.56
1024 4.89 6.89 8.28
2048 23.78 19.61 20.91
4096 28.49 22.95 20.67
8192 23.13 24.73 17.68

and 58.74% improvement for 5122 and 10242, respectively),
but PSkel back-end outperforms OpenACC up to 27% for
the remaining input sizes. Table II corroborates these results,
showing that OpenACC has a lower miss ratio for small inputs,
but higher values for the remaining inputs.

Finally, CloudSim showed a behavior similar to Jacobi.
Again, the OpenACC code has a better performance for small
input sizes with an speedup of 1.73× and 2.27× for input sizes
5122 and 10242, respectively. As shown in Table II, for the
same small input sizes, OpenACC has a lower cache miss ratio
compared to PSkel. However, for larger input sizes, PSkel has
a lower cache miss ratio, thus achieving a better performance,
executing up to 1.25× faster.

2) GPU Performance: Given the well-defined structure
of the stencil pattern, PSkel is able to use the fast shared
memory of GPUs by means of an overlapped trapezoidal tiling
technique. Due to this extra optimization, the PSkel runtime
system achieves a read throughput between 500 GB/s and
1 TB/s in the shared memory while OpenACC achieves a read
throughput of up to 200 GB/s in the L2 cache memory. As



TABLE III
GPU DATA READ THROUGHPUT INTERVALS (MIN – MAX) IN GB/S OF THE

ORIGINAL OPENACC AND PSKEL GENERATED CODES.

Application API DRAM L2 Shared Mem.
Throughput Throughput Throughput

GoL
OpenACC 9.07 – 9.94 117.37 – 133.63 –

PSkel 7.03 – 7.20 14.27 – 15.53 988.26 – 1000

Jacobi
OpenACC 40.72 – 49.13 150.59 – 180.36 –

PSkel 26.91 – 30.43 34.31 – 39.09 648.71 – 736.91

CloudSim
OpenACC 68.34 – 81.84 176.22 – 199.87 –

PSkel 47.86 – 58.52 88.16 – 100.91 579.25 – 591.30

result, all applications executing with PSkel back-end achieved
a better performance compared to OpenACC. Table III shows
the data read throughput in GB/s (minimum and maximum)
across the GPU memory hierarchy for the execution of the
three stencil applications used in this paper.

We also analyzed the tiling technique, implemented in
PSkel, regarding the trade-off between redundant computations
and global data communication. For the CloudSim application,
compared to the OpenACC code, the PSkel tiling technique
increased the amount of floating point operations by 48% on
average for all input sizes, while improving the amount of
global load instructions with an average reduction of 63%.
As shown in Table III, the PSkel code of Cloudsim reduces
the DRAM and L2 cache throughput up to 30% and 50%,
respectively, in relation to the OpenACC code. The CloudSim
application has the highest DRAM read throughput among all
applications for both PSkel and OpenACC because its kernel
uses two additional matrices to store the wind data. Moreover,
the PSkel framework has the limitation that only the main
input and output data can make use of the shared memory,
thus the extra wind data is cached only on L2. Still, the use
of shared memory in PSkel achieves a load throughput up
to 2.95× higher than the equivalent read throughput on the
L2 cache by OpenACC. Overall, the generated PSkel code
improved performance up to 18% compared to OpenACC.

For the GoL application, PSkel back-end achieved the best
performance gain, reaching a speedup of 1.39× compared to
OpenACC code. The tiling technique in PSkel increases the
amount of arithmetic operations by an average of 69%, while
achieving an average reduction of load instructions by 92%,
when compared to OpenACC. As shown in Table III, GoL
application has the lowest data throughput for DRAM and L2
cache among the applications, because it manipulates mainly
boolean data (8 bits). When a load instruction is performed
by a GPU thread, a block of 128 bits is fetched from the
global memory and then cached in L2, therefore reading more
data elements per load instruction, when comparing inputs of
8 bits boolean to 32 bits floating-point, resulting in an overall
decrease in DRAM reads. The generated PSkel code has a 27%
reduction on DRAM reads when compared to OpenACC and
also a 88% reduction on L2 reads. Moreover, PSkel back-end
achieves the best load throughput in shared memory (1 TB/s
with input size of 81922).
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Fig. 3. Speedups of GPU-only and partitioned execution over CPU-only.

Finally, for the Jacobi application, PSkel had an average
increase of 56% on its floating-point operations and an average
reduction of 83% on the total amount of load instructions,
compared to OpenACC. PSkel had a reduction on DRAM and
L2 load throughput of up to 38% and 78%, respectively. Over-
all, PSkel achieved a performance gain up to 17% compared
to the OpenACC code on the Jacobi application.

3) Work-partitioning: As shown in Figure 2, applications
may run up to 4.85× faster on the GPU than the CPU on
Platform 1. This result is expected because the GPU has
a much higher theoretical peak performance than the CPU.
In this case, the work-partitioning mechanism available in
PSkel will not bring any performance improvement because
the best performance is achieved by running all computations
on GPU. However, when the performance of the GPU is
modest compared to the CPU, which is the case in Platform
2, partitioning computations on both CPU and GPU can bring
extra performance gains. Figure 3 illustrates the performance
on Platform 2 of GPU-only and Partitioned (CPU+GPU)
compared to CPU-only for all three stencil applications used
in this paper. In these experiments we fixed the input size in
81922 and executed 50 stencil iterations.

For the GoL application, the Partitioned execution presents
a speedup of 2.57× compared to CPU-only, while the GPU-
only execution achieved a speedup of 2.12×. The Partitioned
performance is obtained when executing 70% of the input data
size on GPU and the remaining input data on CPU, resulting
in an 18% overall performance improvement over GPU-only.

Jacobi shows a speedup of 2.29× for the partitioned exe-
cution compared to CPU-only, while the GPU-only execution
achieves a speedup of 1.92×. The partitioned execution im-
proves 16% over the GPU-only when 65% of computation is
performed on GPU.

Finally, speedups of 2.31× and 2.19× can be observed
for the Partitioned and GPU-only executions on CloudSim
when compared to CPU-only, respectively. The partitioned
execution achieves a 5% improvement over the GPU-only
execution, which is obtained when executing 85% of the input
data size on the GPU. Since the CloudSim application is
richer in floating-point operations and the GPU device contains
more floating-point units than the CPU, the work-partitioning
mechanism achieves its best performance with a higher GPU
partition when compared to Jacobi, which contains very few



floating-point operations, and GoL, which is composed of
integer operations and conditional statements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed OpenACC extensions to enable
efficient code generation and execution of stencil applications
by means of the PSkel framework and runtime system. We
developed a source-to-source compiler that receives as input
stencil applications enhanced by extended OpenACC annota-
tions with stencil directives and generates optimized parallel
code suitable for heterogeneous architectures.

We demonstrated and evaluated the extraction and mapping
process from extended OpenACC annotated codes to the PSkel
framework, and showed that the resulting generated code
achieves better performance when compared to the original
OpenACC code due to optimizations that are enabled by
the stencil pattern. We also demonstrated that it is possible
to improve the performance by using the work-partitioning
optimization that is provided by the skeleton framework, which
splits computation across CPU and GPU. Another advantage
of our approach is that it maintains the performance portability
to target new platforms without modifying the original source
code as long as a backend for the platform becomes available
in the skeleton framework.

As future works, we intend to extend our source-to-source
compiler to support different parallel skeletons, such as map,
reduce, and scan. Moreover, we are currently porting the
proposed source-to-source compiler into the industrial-strength
compiler infrastructure Clang/LLVM. We plan to automati-
cally generate optimized CUDA kernels for stencil computa-
tions while using PSkel as the runtime component.
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