
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 108C (2017) 2333–2337

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.155

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

10.1016/j.procs.2017.05.155 1877-0509

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

This space is reserved for the Procedia header, do not use it

Enabling efficient stencil code generation in OpenACC

Alyson D. Pereira1, Rodrigo C. O. Rocha2, Márcio Castro1, Lúıs F. W. Góes3,
and Mario A. R. Dantas1

1 Universidade Federal de Santa Catarina, Florianópolis, Brazil
alyson.pereira@posgrad.ufsc.br, marcio.castro@ufsc.br, mario.dantas@ufsc.br

2 University of Edinburgh, Scotland, United Kingdom
r.rocha@ed.ac.uk

3 Pontif́ıcia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
lfwgoes@pucminas.br

Abstract
The OpenACC programming model simplifies the programming for accelerator devices such as
GPUs. Its abstract accelerator model defines a least common denominator for accelerator de-
vices, thus it cannot represent architectural specifics of these devices without losing portability.
Therefore, this general-purpose approach delivers good performance on average, but it misses
optimization opportunities for code generation and execution of specific classes of applications.
In this paper, we propose stencil extensions to enable efficient code generation in OpenACC.
Our results show that our stencil extensions may improve the performance of OpenACC in up
to 28% and 45% on GPU and CPU, respectively.

Keywords: Stencil, parallel skeletons, source-to-source transformation, OpenACC, CUDA

1 Introduction

Structured parallel programs typically follow patterns of computation and coordination. Com-
putation represent the application’s logic and data flow control, whereas coordination handles
parallelism, concurrency, communication, and load balancing. An important parallel pattern is
stencil. This pattern operates on n-dimensional data structures, using an input data value and
its neighbors to compute the corresponding output data element. The stencil pattern is criti-
cal in many scientific computing domains, including computational fluid dynamics and image
processing.

The directive-based approach of OpenACC for GPU programming provides a simple yet
powerful way for programmers to parallelize their code. Users need to identify portions of code
that are profitable for parallel execution and annotate them using appropriate directives. For
instance, the code fragment in Code 1 demonstrates the use of the OpenACC annotations. The
#pragma acc parallel loop directive indicates that the loop should be executed by the GPU,
while the #pragma acc data directive indicates which data should be allocated and copied from
the host system to the GPU memory. An OpenACC compiler analyzes the annotated code and
transparently maps the loops to GPU threads. However, the compiler may not generate very
optimized binaries for such codes. This is because architectural-specific features such as software

1

This space is reserved for the Procedia header, do not use it

Enabling efficient stencil code generation in OpenACC

Alyson D. Pereira1, Rodrigo C. O. Rocha2, Márcio Castro1, Lúıs F. W. Góes3,
and Mario A. R. Dantas1

1 Universidade Federal de Santa Catarina, Florianópolis, Brazil
alyson.pereira@posgrad.ufsc.br, marcio.castro@ufsc.br, mario.dantas@ufsc.br

2 University of Edinburgh, Scotland, United Kingdom
r.rocha@ed.ac.uk

3 Pontif́ıcia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
lfwgoes@pucminas.br

Abstract
The OpenACC programming model simplifies the programming for accelerator devices such as
GPUs. Its abstract accelerator model defines a least common denominator for accelerator de-
vices, thus it cannot represent architectural specifics of these devices without losing portability.
Therefore, this general-purpose approach delivers good performance on average, but it misses
optimization opportunities for code generation and execution of specific classes of applications.
In this paper, we propose stencil extensions to enable efficient code generation in OpenACC.
Our results show that our stencil extensions may improve the performance of OpenACC in up
to 28% and 45% on GPU and CPU, respectively.

Keywords: Stencil, parallel skeletons, source-to-source transformation, OpenACC, CUDA

1 Introduction

Structured parallel programs typically follow patterns of computation and coordination. Com-
putation represent the application’s logic and data flow control, whereas coordination handles
parallelism, concurrency, communication, and load balancing. An important parallel pattern is
stencil. This pattern operates on n-dimensional data structures, using an input data value and
its neighbors to compute the corresponding output data element. The stencil pattern is criti-
cal in many scientific computing domains, including computational fluid dynamics and image
processing.

The directive-based approach of OpenACC for GPU programming provides a simple yet
powerful way for programmers to parallelize their code. Users need to identify portions of code
that are profitable for parallel execution and annotate them using appropriate directives. For
instance, the code fragment in Code 1 demonstrates the use of the OpenACC annotations. The
#pragma acc parallel loop directive indicates that the loop should be executed by the GPU,
while the #pragma acc data directive indicates which data should be allocated and copied from
the host system to the GPU memory. An OpenACC compiler analyzes the annotated code and
transparently maps the loops to GPU threads. However, the compiler may not generate very
optimized binaries for such codes. This is because architectural-specific features such as software

1

This space is reserved for the Procedia header, do not use it

Enabling efficient stencil code generation in OpenACC

Alyson D. Pereira1, Rodrigo C. O. Rocha2, Márcio Castro1, Lúıs F. W. Góes3,
and Mario A. R. Dantas1

1 Universidade Federal de Santa Catarina, Florianópolis, Brazil
alyson.pereira@posgrad.ufsc.br, marcio.castro@ufsc.br, mario.dantas@ufsc.br

2 University of Edinburgh, Scotland, United Kingdom
r.rocha@ed.ac.uk

3 Pontif́ıcia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
lfwgoes@pucminas.br

Abstract
The OpenACC programming model simplifies the programming for accelerator devices such as
GPUs. Its abstract accelerator model defines a least common denominator for accelerator de-
vices, thus it cannot represent architectural specifics of these devices without losing portability.
Therefore, this general-purpose approach delivers good performance on average, but it misses
optimization opportunities for code generation and execution of specific classes of applications.
In this paper, we propose stencil extensions to enable efficient code generation in OpenACC.
Our results show that our stencil extensions may improve the performance of OpenACC in up
to 28% and 45% on GPU and CPU, respectively.

Keywords: Stencil, parallel skeletons, source-to-source transformation, OpenACC, CUDA

1 Introduction

Structured parallel programs typically follow patterns of computation and coordination. Com-
putation represent the application’s logic and data flow control, whereas coordination handles
parallelism, concurrency, communication, and load balancing. An important parallel pattern is
stencil. This pattern operates on n-dimensional data structures, using an input data value and
its neighbors to compute the corresponding output data element. The stencil pattern is criti-
cal in many scientific computing domains, including computational fluid dynamics and image
processing.

The directive-based approach of OpenACC for GPU programming provides a simple yet
powerful way for programmers to parallelize their code. Users need to identify portions of code
that are profitable for parallel execution and annotate them using appropriate directives. For
instance, the code fragment in Code 1 demonstrates the use of the OpenACC annotations. The
#pragma acc parallel loop directive indicates that the loop should be executed by the GPU,
while the #pragma acc data directive indicates which data should be allocated and copied from
the host system to the GPU memory. An OpenACC compiler analyzes the annotated code and
transparently maps the loops to GPU threads. However, the compiler may not generate very
optimized binaries for such codes. This is because architectural-specific features such as software

1

This space is reserved for the Procedia header, do not use it

Enabling efficient stencil code generation in OpenACC

Alyson D. Pereira1, Rodrigo C. O. Rocha2, Márcio Castro1, Lúıs F. W. Góes3,
and Mario A. R. Dantas1

1 Universidade Federal de Santa Catarina, Florianópolis, Brazil
alyson.pereira@posgrad.ufsc.br, marcio.castro@ufsc.br, mario.dantas@ufsc.br

2 University of Edinburgh, Scotland, United Kingdom
r.rocha@ed.ac.uk

3 Pontif́ıcia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
lfwgoes@pucminas.br

Abstract
The OpenACC programming model simplifies the programming for accelerator devices such as
GPUs. Its abstract accelerator model defines a least common denominator for accelerator de-
vices, thus it cannot represent architectural specifics of these devices without losing portability.
Therefore, this general-purpose approach delivers good performance on average, but it misses
optimization opportunities for code generation and execution of specific classes of applications.
In this paper, we propose stencil extensions to enable efficient code generation in OpenACC.
Our results show that our stencil extensions may improve the performance of OpenACC in up
to 28% and 45% on GPU and CPU, respectively.

Keywords: Stencil, parallel skeletons, source-to-source transformation, OpenACC, CUDA

1 Introduction

Structured parallel programs typically follow patterns of computation and coordination. Com-
putation represent the application’s logic and data flow control, whereas coordination handles
parallelism, concurrency, communication, and load balancing. An important parallel pattern is
stencil. This pattern operates on n-dimensional data structures, using an input data value and
its neighbors to compute the corresponding output data element. The stencil pattern is criti-
cal in many scientific computing domains, including computational fluid dynamics and image
processing.

The directive-based approach of OpenACC for GPU programming provides a simple yet
powerful way for programmers to parallelize their code. Users need to identify portions of code
that are profitable for parallel execution and annotate them using appropriate directives. For
instance, the code fragment in Code 1 demonstrates the use of the OpenACC annotations. The
#pragma acc parallel loop directive indicates that the loop should be executed by the GPU,
while the #pragma acc data directive indicates which data should be allocated and copied from
the host system to the GPU memory. An OpenACC compiler analyzes the annotated code and
transparently maps the loops to GPU threads. However, the compiler may not generate very
optimized binaries for such codes. This is because architectural-specific features such as software

1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.155&domain=pdf

2334 Alyson D. Pereira et al. / Procedia Computer Science 108C (2017) 2333–2337Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

1 #pragma acc data copy(A[0:M*N]) create(B[0:M*N])
2 {
3 for(int t = 0; t < timesteps; t++){
4 #pragma acc parallel loop
5 for(int y = 1; y < M-1; y++){
6 #pragma acc loop independent
7 for(int x = 1; x < N-1; x++)
8 B[y*M+x] = alpha *(A[(y+1)*M+x] + A[(y-1)*M+x] + A[y*M+(x+1)] + A[y*M+(x-1)] - beta);
9 }

10 /* data swap */
11 #pragma acc parallel loop
12 for(int y = 1; y < M-1; y++){
13 #pragma acc loop independent
14 for(int x = 1; x < N-1; x++)
15 A[y*M+x] = B[y*M+x];
16 }
17 }
18 }

Code 1: Jacobi stencil code with default OpenACC annotations.

managed caches (known as shared memory in the CUDA programming model) are usually not
properly exploited by the compiler in the code generation [3].

A prior knowledge that the given code belongs to the stencil pattern could be used to achieve
a better performance. A common approach that takes advantage of the pattern of applications
is the use of parallel skeletons. Parallel skeletons model and abstract common parallel pro-
gramming patterns (computation and coordination phases), thereby enabling the programmer
to focus on algorithm design, rather than on runtime system details. Some available skeleton-
based programming frameworks includes: SkelCL [6], an OpenCL-based skeleton library for
multi-GPU programming; SkePU [1], composed by a template library that is compatible to any
C++11 compiler for sequential code generation and a source-to-source tool to target OpenMP,
OpenCL and CUDA; and PSkel [5], a framework focused on the stencil pattern.

In this paper, we propose OpenACC extensions to enable efficient code generation and
execution of stencil applications by parallel skeleton frameworks. These extensions are designed
to expose the stencil pattern to the compiler and runtime system, enabling specific optimizations
for this class of applications. We developed a source-to-source compiler that receives as input
stencil applications enhanced by the extended OpenACC stencil directives, generating optimized
parallel code suitable for heterogeneous architectures through the PSkel framework.

2 The PSkel stencil framework

PSkel is a skeleton-based framework for high-level programming stencil computations, which
offers parallel execution support on CPU and GPU. The PSkel API provides the Array tem-
plates classes for manipulating n-dimensional input and output data. The prototype function
stencilKernel is the application specific method that describes the computation performed
on each entry of the input array. The API also provides a set of classes for managing the whole
execution of the stencil computation over the input data. Code 2 exemplifies the use of the
PSkel framework to perform on the GPU the same stencil computation (Code 1).

Given the well-defined structure of skeletons, PSkel is able to perform several optimiza-
tions, including the use of the fast shared memory of GPUs using an overlapped trapezoidal
tiling technique. Tiling partitions the iteration space into smaller regular blocks (tiles). When
tiling stencil computation, neighborhood dependencies inherent to stencil computations must
be considered before partitioning the data into smaller blocks. One of the main solutions for
handling neighborhood dependencies is via overlapped blocks, resulting in redundant data and
computation per tile [2, 4].

2

Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

1 parallel void
2 stencilKernel(Array2D<float > A, Array2D<float > B, Mask2D<int > mask ,
3 struct Arguments args , int x, int y){
4 B(x,y) = args.alpha * (A(x,y+1) + A(x,y-1) + A(x+1,y) + A(x-1,y) - args.beta);
5 }
6
7 void main (){
8 /* ... */
9 Array2D<float > input(A,M,N);

10 Array2D<float > output(B,M,N);
11 int neighbors = {{0,1}, {-1,0}, {1,0}, {-1,0}};
12 Mask2D<int > mask(4, neighbors);
13 struct Arguments args(alpha , beta);
14 /* ... */
15 Stencil2D<Array2D <float >, Mask2D <int >, Arguments > jacobi(A,B,args);
16 jacobi.runIterative(device ::GPU , timesteps , 1.0);
17 }

Code 2: PSkel Stencil kernel function.

3 OpenACC stencil extensions

We propose directives for the extended OpenACC to inform the compiler about specific features
of the stencil parallel skeleton as well as for its execution on a heterogeneous architecture. The
use of the stencil directives is shown in Code 3 on line 1. The remaining code is exactly the
same as the fragment shown in Code 1.

The device directive defines the target architecture for the execution of the stencil computa-
tion. The PSkel runtime system supports execution on CPU, GPU, or both simultaneously. For
a partitioned execution between host CPU and GPU device, the percentage of the input data
processed by the GPU must be informed, ranging from 0.0 (CPU-only) up to 1.0 (GPU-only).

The iterations directive defines the number of iterations performed by the stencil. Its
value must be informed by the same variable that bounds the following loop of the stencil
iterations. In the aforementined code line, the number of iterations are defined by variable
timesteps, and it is used as a bound to the for loop on line 3 of Code 1.

The input and output directives define, respectively, the stencil input and output data.
Their values must be set to their corresponding array pointers used on the stencil computations,
and their dimensions must be informed, indicating their respectively height, width and/or
depth. Their value must be informed by the same variables that bounds the stencil parallel
loop execution. In Code 1, the width and height directives are informed by the N and M variables,
respectively. These variables are used as loop bounds on lines 5 and 7 of Code 1.

There is no need to inform in the acc stencil directive primitive data variables used on the
stencil computation. The proposed source-to-source compiler detects if the stencil computation
makes use of other variables to be able generate a correct and equivalent PSkel code. For
instance, on Code 1 the alpha and beta variables used on the stencil computation will be
acessed from a struct on the resulting PSkel source code. However, if the stencil computation
uses additional data such as dynamic arrays, their pointers and dimensions must be informed
using the args directive, which is similar to the input and output directives.

1 #pragma acc stencil device(gpu,1) iterations(timesteps) input(A[M,N]) output(B[M,N])
2 {
3 /* OpenACC code */
4 }

Code 3: Jacobi stencil code with extended OpenACC annotations.

3

 Alyson D. Pereira et al. / Procedia Computer Science 108C (2017) 2333–2337 2335Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

1 #pragma acc data copy(A[0:M*N]) create(B[0:M*N])
2 {
3 for(int t = 0; t < timesteps; t++){
4 #pragma acc parallel loop
5 for(int y = 1; y < M-1; y++){
6 #pragma acc loop independent
7 for(int x = 1; x < N-1; x++)
8 B[y*M+x] = alpha *(A[(y+1)*M+x] + A[(y-1)*M+x] + A[y*M+(x+1)] + A[y*M+(x-1)] - beta);
9 }

10 /* data swap */
11 #pragma acc parallel loop
12 for(int y = 1; y < M-1; y++){
13 #pragma acc loop independent
14 for(int x = 1; x < N-1; x++)
15 A[y*M+x] = B[y*M+x];
16 }
17 }
18 }

Code 1: Jacobi stencil code with default OpenACC annotations.

managed caches (known as shared memory in the CUDA programming model) are usually not
properly exploited by the compiler in the code generation [3].

A prior knowledge that the given code belongs to the stencil pattern could be used to achieve
a better performance. A common approach that takes advantage of the pattern of applications
is the use of parallel skeletons. Parallel skeletons model and abstract common parallel pro-
gramming patterns (computation and coordination phases), thereby enabling the programmer
to focus on algorithm design, rather than on runtime system details. Some available skeleton-
based programming frameworks includes: SkelCL [6], an OpenCL-based skeleton library for
multi-GPU programming; SkePU [1], composed by a template library that is compatible to any
C++11 compiler for sequential code generation and a source-to-source tool to target OpenMP,
OpenCL and CUDA; and PSkel [5], a framework focused on the stencil pattern.

In this paper, we propose OpenACC extensions to enable efficient code generation and
execution of stencil applications by parallel skeleton frameworks. These extensions are designed
to expose the stencil pattern to the compiler and runtime system, enabling specific optimizations
for this class of applications. We developed a source-to-source compiler that receives as input
stencil applications enhanced by the extended OpenACC stencil directives, generating optimized
parallel code suitable for heterogeneous architectures through the PSkel framework.

2 The PSkel stencil framework

PSkel is a skeleton-based framework for high-level programming stencil computations, which
offers parallel execution support on CPU and GPU. The PSkel API provides the Array tem-
plates classes for manipulating n-dimensional input and output data. The prototype function
stencilKernel is the application specific method that describes the computation performed
on each entry of the input array. The API also provides a set of classes for managing the whole
execution of the stencil computation over the input data. Code 2 exemplifies the use of the
PSkel framework to perform on the GPU the same stencil computation (Code 1).

Given the well-defined structure of skeletons, PSkel is able to perform several optimiza-
tions, including the use of the fast shared memory of GPUs using an overlapped trapezoidal
tiling technique. Tiling partitions the iteration space into smaller regular blocks (tiles). When
tiling stencil computation, neighborhood dependencies inherent to stencil computations must
be considered before partitioning the data into smaller blocks. One of the main solutions for
handling neighborhood dependencies is via overlapped blocks, resulting in redundant data and
computation per tile [2, 4].

2

Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

1 parallel void
2 stencilKernel(Array2D<float > A, Array2D<float > B, Mask2D<int > mask ,
3 struct Arguments args , int x, int y){
4 B(x,y) = args.alpha * (A(x,y+1) + A(x,y-1) + A(x+1,y) + A(x-1,y) - args.beta);
5 }
6
7 void main (){
8 /* ... */
9 Array2D<float > input(A,M,N);

10 Array2D<float > output(B,M,N);
11 int neighbors = {{0,1}, {-1,0}, {1,0}, {-1,0}};
12 Mask2D<int > mask(4, neighbors);
13 struct Arguments args(alpha , beta);
14 /* ... */
15 Stencil2D<Array2D <float >, Mask2D <int >, Arguments > jacobi(A,B,args);
16 jacobi.runIterative(device ::GPU , timesteps , 1.0);
17 }

Code 2: PSkel Stencil kernel function.

3 OpenACC stencil extensions

We propose directives for the extended OpenACC to inform the compiler about specific features
of the stencil parallel skeleton as well as for its execution on a heterogeneous architecture. The
use of the stencil directives is shown in Code 3 on line 1. The remaining code is exactly the
same as the fragment shown in Code 1.

The device directive defines the target architecture for the execution of the stencil computa-
tion. The PSkel runtime system supports execution on CPU, GPU, or both simultaneously. For
a partitioned execution between host CPU and GPU device, the percentage of the input data
processed by the GPU must be informed, ranging from 0.0 (CPU-only) up to 1.0 (GPU-only).

The iterations directive defines the number of iterations performed by the stencil. Its
value must be informed by the same variable that bounds the following loop of the stencil
iterations. In the aforementined code line, the number of iterations are defined by variable
timesteps, and it is used as a bound to the for loop on line 3 of Code 1.

The input and output directives define, respectively, the stencil input and output data.
Their values must be set to their corresponding array pointers used on the stencil computations,
and their dimensions must be informed, indicating their respectively height, width and/or
depth. Their value must be informed by the same variables that bounds the stencil parallel
loop execution. In Code 1, the width and height directives are informed by the N and M variables,
respectively. These variables are used as loop bounds on lines 5 and 7 of Code 1.

There is no need to inform in the acc stencil directive primitive data variables used on the
stencil computation. The proposed source-to-source compiler detects if the stencil computation
makes use of other variables to be able generate a correct and equivalent PSkel code. For
instance, on Code 1 the alpha and beta variables used on the stencil computation will be
acessed from a struct on the resulting PSkel source code. However, if the stencil computation
uses additional data such as dynamic arrays, their pointers and dimensions must be informed
using the args directive, which is similar to the input and output directives.

1 #pragma acc stencil device(gpu,1) iterations(timesteps) input(A[M,N]) output(B[M,N])
2 {
3 /* OpenACC code */
4 }

Code 3: Jacobi stencil code with extended OpenACC annotations.

3

2336 Alyson D. Pereira et al. / Procedia Computer Science 108C (2017) 2333–2337Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

4 Source-to-source compiler

The compilation process starts with an input C/C++ code which is enhanced by extended
OpenACC annotations as discussed in Section 3 to take advantage of heterogeneous architec-
tures. Since PSkel provides the necessary runtime system for executing stencil computations
on heterogeneous architectures, the output of the source-to-source compiler is a PSkel C/C++
code targeted for multicore processors or CUDA-capable GPUs.

The Frontend Parser parses the received input C/C++ source code, enhanced by extended
OpenACC annotations, which includes stencil specific directives, and produces an annotated
Abstract Syntax Tree (AST). The Extended OpenACC Preprocessor traverses the stencil
constructions using the extended OpenACC annotations. For each stencil construction found,
it extracts information from the directives, which provides relevant information for identifying
the target device, number of stencil iterations, and the input and output n-dimensional arrays,
as well as their dimensions and sizes. Informed by stencil directives, the Loop Analyzer
validates the semantics of nested loops, annotating the AST nodes for code generation. Based
on information extracted from the stencil directives, the loop analyzer identifies the occurrences
of the variables related to the input and output n-dimensional arrays, and also the nested loops
responsible for the stencil iterations and traversing the entries of the input array.

The Source Code Generator traverses the annotated AST producing C/C++ code, trans-
forming loops annotated with stencil directives into PSkel equivalent code. The body of the
inner-most loop is transformed into an implementation of the stencil kernel function, the proto-
type function stencilKernel in PSkel; the array pointers are wrapped by PSkel n-dimensional
array abstractions; and the original AST node of the whole stencil construction is replaced by a
block of PSkel code that performs the setup of the stencil runtime system and the launch of the
iterative stencil execution on the specified devices. The final stage invokes a System Compiler
(e.g., NVCC for CUDA backend, GCC with OpenMP for a multicore backend, etc.) to generate
the target object code. Input to this stage is the PSkel runtime library and the PSkel-enabled
C/C++ source code that was previously generated by the source-to-source compiler.

5 Experimental results

In this section, we present and discuss our experimental results. We compare the performance
of the implementations with the original OpenACC code to the extended OpenACC code with
PSkel as the backend for the stencil execution. We considered three stencil applications from
different domains: a stencil implementation of the Conway’s Game of Life(GoL), the Jacobi
iterative method for solving matrix equations and a cloud dynamics simulator (Cloudsim). We
carried out our experiments on a six-core Intel Xeon E5 processor with 64GB of RAM and a
NVIDIA Tesla K20 GPU, running on CentOS 6.7. To build the applications, we used NVIDIA
CUDA version 7.5, GCC version 4.9.2, and PGI Accelerator compiler version 16.5.

Figure 1 shows the execution time for each of the three stencil applications executing on
CPU and GPU. The reported values represent the average of 10 executions with an input size
of 81922 and 50 stencil iterations. For both CPU and GPU executions, PSkel presents a better
performance than OpenACC. The main reason for the performance gain over OpenACC on CPU
is the cache miss ratio on the last-level cache (LLC). The code generated by OpenACC has an
average miss ratio of 32.25%, while the PSkel generated code has 21.85%. The GoL application
achieves the best performance, corresponding to 45% of improvement over OpenACC, while
Jacobi and Cloudsim improves the execution time by 27% and 20%, respectively.

For the GPU execution, PSkel is able to use the fast shared memory of GPUs. Due to this
extra optimization, the PSkel runtime system achieves a read throughput between 500 GB/s and
1 TB/s as it uses the shared memory, instead on relying on the L2 cache memory as OpenACC

4

Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

CloudSim GoL Jacobi
0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

)

OpenACC
PSkel

(a)

CloudSim GoL Jacobi
0

0.5

1

1.5

2

2.5

3

Ex
ec

ut
io

n
tim

e
(s

)

OpenACC
PSkel

(b)

Figure 1: Execution times on CPU (a) and GPU (b) of the original OpenACC code and the generated
PSkel code from the OpenACC stencil extensions.

does. Moreover, this technique reduces the amount of global memory loads by up to 92%.
As a result, all applications executing with the PSkel backend achieved a better performance
compared to OpenACC. Overall, the generated PSkel code improved the performance up to
28% compared to OpenACC for the GoL application, while Jacobi and Cloudsim improves the
execution time by 18% and 17%, respectively.

6 Conclusions and future work

In this paper, we have proposed OpenACC extensions to enable efficient code generation and ex-
ecution of stencil applications by means of the PSkel parallel skeleton framework as the runtime
system. We developed a source-to-source compiler that receives as input stencil applications
enhanced by the extended OpenACC annotations with stencil directives and generates opti-
mized parallel code suitable for heterogeneous architectures. We demonstrated and evaluated
the extraction and mapping process from extended OpenACC annotated codes to the PSkel
framework, and showed that the resulting generated code achieves better performance when
compared to the original OpenACC code due to the optimizations that are enabled by the
stencil pattern. As future works, we intend to extend our source-to-source compiler to support
different parallel skeletons. Moreover, we also plan to include support of the proposed stencil
extensions to an open source OpenACC compiler.

References

[1] August Ernstsson, Lu Li, and Christoph Kessler. Skepu2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. International Journal of Parallel Programming, pages
1–19, 2017.

[2] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-performance code generation for
stencil computations on GPU architectures. In ACM International Conference on Supercomputing
(ICS), pages 311–320, Venice, Italy, 2012. ACM.

[3] Ahmad Lashgar and Amirali Baniasadi. Employing software-managed caches in OpenACC: Oppor-
tunities and benefits. ACM Trans. Model. Perform. Eval. Comput. Syst., 1(1):2:1–2:34, February
2016.

[4] Jiayuan Meng and Kevin Skadron. A Performance Study for Iterative Stencil Loops on GPUs with
Ghost Zone Optimizations. Int. Journal of Parallel Programming, 39(1):115–142, 2011.

[5] Alyson D. Pereira, Luiz Ramos, and Lúıs F. W. Góes. PSkel: A stencil programming framework
for CPU-GPU systems. Concur. and Comp.: Practice and Experience, 27(17):4938–4953, 2015.

[6] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL: A Portable Skeleton Library for High-
Level GPU Programming. In IEEE International Symposium on Parallel and Distributed Processing
Workshops (IPDPSW), pages 1176–1182, Shanghai, China, 2011. IEEE Computer Society.

5

 Alyson D. Pereira et al. / Procedia Computer Science 108C (2017) 2333–2337 2337Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

4 Source-to-source compiler

The compilation process starts with an input C/C++ code which is enhanced by extended
OpenACC annotations as discussed in Section 3 to take advantage of heterogeneous architec-
tures. Since PSkel provides the necessary runtime system for executing stencil computations
on heterogeneous architectures, the output of the source-to-source compiler is a PSkel C/C++
code targeted for multicore processors or CUDA-capable GPUs.

The Frontend Parser parses the received input C/C++ source code, enhanced by extended
OpenACC annotations, which includes stencil specific directives, and produces an annotated
Abstract Syntax Tree (AST). The Extended OpenACC Preprocessor traverses the stencil
constructions using the extended OpenACC annotations. For each stencil construction found,
it extracts information from the directives, which provides relevant information for identifying
the target device, number of stencil iterations, and the input and output n-dimensional arrays,
as well as their dimensions and sizes. Informed by stencil directives, the Loop Analyzer
validates the semantics of nested loops, annotating the AST nodes for code generation. Based
on information extracted from the stencil directives, the loop analyzer identifies the occurrences
of the variables related to the input and output n-dimensional arrays, and also the nested loops
responsible for the stencil iterations and traversing the entries of the input array.

The Source Code Generator traverses the annotated AST producing C/C++ code, trans-
forming loops annotated with stencil directives into PSkel equivalent code. The body of the
inner-most loop is transformed into an implementation of the stencil kernel function, the proto-
type function stencilKernel in PSkel; the array pointers are wrapped by PSkel n-dimensional
array abstractions; and the original AST node of the whole stencil construction is replaced by a
block of PSkel code that performs the setup of the stencil runtime system and the launch of the
iterative stencil execution on the specified devices. The final stage invokes a System Compiler
(e.g., NVCC for CUDA backend, GCC with OpenMP for a multicore backend, etc.) to generate
the target object code. Input to this stage is the PSkel runtime library and the PSkel-enabled
C/C++ source code that was previously generated by the source-to-source compiler.

5 Experimental results

In this section, we present and discuss our experimental results. We compare the performance
of the implementations with the original OpenACC code to the extended OpenACC code with
PSkel as the backend for the stencil execution. We considered three stencil applications from
different domains: a stencil implementation of the Conway’s Game of Life(GoL), the Jacobi
iterative method for solving matrix equations and a cloud dynamics simulator (Cloudsim). We
carried out our experiments on a six-core Intel Xeon E5 processor with 64GB of RAM and a
NVIDIA Tesla K20 GPU, running on CentOS 6.7. To build the applications, we used NVIDIA
CUDA version 7.5, GCC version 4.9.2, and PGI Accelerator compiler version 16.5.

Figure 1 shows the execution time for each of the three stencil applications executing on
CPU and GPU. The reported values represent the average of 10 executions with an input size
of 81922 and 50 stencil iterations. For both CPU and GPU executions, PSkel presents a better
performance than OpenACC. The main reason for the performance gain over OpenACC on CPU
is the cache miss ratio on the last-level cache (LLC). The code generated by OpenACC has an
average miss ratio of 32.25%, while the PSkel generated code has 21.85%. The GoL application
achieves the best performance, corresponding to 45% of improvement over OpenACC, while
Jacobi and Cloudsim improves the execution time by 27% and 20%, respectively.

For the GPU execution, PSkel is able to use the fast shared memory of GPUs. Due to this
extra optimization, the PSkel runtime system achieves a read throughput between 500 GB/s and
1 TB/s as it uses the shared memory, instead on relying on the L2 cache memory as OpenACC

4

Enabling efficient stencil code generation in OpenACC . . . Pereira, Rocha, Castro, Góes and Dantas

CloudSim GoL Jacobi
0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

)

OpenACC
PSkel

(a)

CloudSim GoL Jacobi
0

0.5

1

1.5

2

2.5

3

Ex
ec

ut
io

n
tim

e
(s

)

OpenACC
PSkel

(b)

Figure 1: Execution times on CPU (a) and GPU (b) of the original OpenACC code and the generated
PSkel code from the OpenACC stencil extensions.

does. Moreover, this technique reduces the amount of global memory loads by up to 92%.
As a result, all applications executing with the PSkel backend achieved a better performance
compared to OpenACC. Overall, the generated PSkel code improved the performance up to
28% compared to OpenACC for the GoL application, while Jacobi and Cloudsim improves the
execution time by 18% and 17%, respectively.

6 Conclusions and future work

In this paper, we have proposed OpenACC extensions to enable efficient code generation and ex-
ecution of stencil applications by means of the PSkel parallel skeleton framework as the runtime
system. We developed a source-to-source compiler that receives as input stencil applications
enhanced by the extended OpenACC annotations with stencil directives and generates opti-
mized parallel code suitable for heterogeneous architectures. We demonstrated and evaluated
the extraction and mapping process from extended OpenACC annotated codes to the PSkel
framework, and showed that the resulting generated code achieves better performance when
compared to the original OpenACC code due to the optimizations that are enabled by the
stencil pattern. As future works, we intend to extend our source-to-source compiler to support
different parallel skeletons. Moreover, we also plan to include support of the proposed stencil
extensions to an open source OpenACC compiler.

References

[1] August Ernstsson, Lu Li, and Christoph Kessler. Skepu2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. International Journal of Parallel Programming, pages
1–19, 2017.

[2] Justin Holewinski, Louis-Noël Pouchet, and P. Sadayappan. High-performance code generation for
stencil computations on GPU architectures. In ACM International Conference on Supercomputing
(ICS), pages 311–320, Venice, Italy, 2012. ACM.

[3] Ahmad Lashgar and Amirali Baniasadi. Employing software-managed caches in OpenACC: Oppor-
tunities and benefits. ACM Trans. Model. Perform. Eval. Comput. Syst., 1(1):2:1–2:34, February
2016.

[4] Jiayuan Meng and Kevin Skadron. A Performance Study for Iterative Stencil Loops on GPUs with
Ghost Zone Optimizations. Int. Journal of Parallel Programming, 39(1):115–142, 2011.

[5] Alyson D. Pereira, Luiz Ramos, and Lúıs F. W. Góes. PSkel: A stencil programming framework
for CPU-GPU systems. Concur. and Comp.: Practice and Experience, 27(17):4938–4953, 2015.

[6] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL: A Portable Skeleton Library for High-
Level GPU Programming. In IEEE International Symposium on Parallel and Distributed Processing
Workshops (IPDPSW), pages 1176–1182, Shanghai, China, 2011. IEEE Computer Society.

5

