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PUC Minas, Brazil
lfwgoes@pucminas.br

ABSTRACT
Auto-vectorization techniques allow the compiler to
automatically generate SIMD vector code out of
scalar code. SLP is a commonly-used algorithm for
converting straight-line code into vector code, which
complements the loop-based traditional vectorizers.
It works by scanning the input code looking for
groups of instructions that can be combined into
vectors and replacing them with the corresponding
vector instructions. The state-of-the-art SLP algo-
rithm works by attempting to vectorize blocks of
code with a fixed vector width and falling back to
smaller widths for the whole block upon failure.
In this work we remove this limitation and in-

troduce Variable-Width SLP (VW-SLP), a novel
algorithm that is capable of adjusting the vector
width at an instruction granularity. This allows the
algorithm to better adapt to the code’s SIMD par-
allelism characteristics, thus exposing more vector
parallelism than before. We implemented VW-SLP
in LLVM and our evaluation on a real system shows
that it considerably improves the performance of
real benchmark code, with a small increase in com-
pilation time.
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1 INTRODUCTION
Auto-vectorization is a performance-critical opti-
mization in modern optimizing compilers. Its goal
is to automatically generate SIMD instructions out
of scalar code, allowing parts of the program to
run on the processor’s high-throughput SIMD units,
without any effort from the programmer’s side. An al-
ternative approach is to move the burden of both ex-
pressing the vector parallelism and tuning its perfor-
mance from the compiler to the programmer. There
are several ways of expressing vector parallelism,
including target-specific intrinsics, a vector-aware
language, or more commonly, a programming model
(e.g. OpenMP [8]). Auto-vectorization is the pre-
ferred approach for most software projects, except
for some highly tuned library kernels or for specific
High Performance Computing workloads.

There are two main approaches for auto-vectorizing
scalar code: the traditional loop-based algorithms
(e.g., [2, 3]) and those operating on straight-line code
(e.g., [18, 35]).

Superword-Level Parallelism (SLP), first intro-
duced by Larsen and Amarasinghe [18], is the algo-
rithm originally proposed for vectorizing straight-
line code. Instead of relying on a loop structures, it
looks for groups of isomorphic instruction sequences
that can be converted into vectors. Similar algo-
rithms to the original SLP are implemented in sev-
eral optimizing compilers. The bottom-up SLP algo-
rithm [35] is the one implemented in both GCC [11]
and LLVM [19] due to its good coverage and fast
run-time. Throughout the rest of the paper, with
the term “SLP”, we are referring to this bottom-up
SLP algorithm present in GCC and LLVM.

SLP works by first scanning the code for scalar in-
structions that can become the seeds of vectorization
and grouping them together. This group becomes

https://doi.org/10.1145/3243176.3243189
https://doi.org/10.1145/3243176.3243189
https://doi.org/10.1145/3243176.3243189


PACT ’18, November 1–4, 2018, Limassol, Cyprus V. Porpodas, R. C. O. Rocha and L. F. W. Góes

the root of the SLP graph, a graph structure that
holds all groups of potentially vectorizable scalar
instructions. Then, SLP walks up the use-def chains,
towards definitions, attempting to group more iso-
morphic instructions together, as long as they can
be potentially vectorized. This process repeats un-
til the SLP graph is completed. The next step is
to evaluate whether converting the groups of the
SLP graph into vectors can improve performance
based on the compiler’s built-in cost model. This
cost calculation factors in the overheads of insert-
ing/extracting data into/out of the vector registers.
If vectorization is shown to be profitable, vector in-
structions are generated to replace the groups of
scalars.

In this paper, we extend the SLP algorithm with
a strategy for varying the vector width1 (i.e. the
number of scalars that fit within each group) at
an instruction granularity while building the SLP
graph. This allows the SLP graph to branch out
into either narrower branches or wider ones as dic-
tated by the underlying code. The state-of-the-art
algorithm, on the other hand, maximizes the vector
width at the root of the graph (the seed group node)
and maintains the same vector width for the whole
SLP graph. The proposed Variable-Width SLP algo-
rithm avoids early termination when either shorter
or wider widths are required by the underlying code,
thus leading to greater coverage than before. The
end result is a more powerful vectorizer, capable of
generating faster code.

2 BACKGROUND

2.1 Loop Vectorization Versus SLP
Traditional loop vectorization works by conceptu-
ally fusing consecutive loop iterations and replacing
the fused instructions by their vectorized form. This
requires a well-formed loop structure with statically
analyzable loop dependencies (or dynamically evalu-
ated with multi-versioning) and simple control flow.
Straight-line code algorithms, on the other hand,

like the SLP vectorizer [18, 35], (i.) are not restricted
to operate within loops, i.e., they can handle straight-
line code anywhere in the program, and (ii.) can
vectorize code within loops where the loop vectorizer
fails.
Both the loop-based and the straight-line code

algorithms conceptually perform the same operation
of reducing VL (Vector-Length) isomorphic instruc-
tions into VL-wide vector instructions. However,

1With the term vector width we refer to the number of lanes

in the SIMD vector. Vector size, vector length and vector
factor are also commonly used to describe this.

they follow different approaches to achieve this result.
In loop-based algorithms, the presence of the loop
structure implies the presence of multiple copies of
each instruction in neighboring iterations. Straight-
line code algorithms, on the other hand, do not rely
on the presence of a loop, so they have to explore
the code to find repeated sequences of isomorphic
scalar instructions.
The straight-line code vectorization can be con-

sidered as a superset algorithm of broader scope
compared to the loop-based vectorizer, in particular
with the support of loop unrolling [18]. However, in
practice this is not yet the case, and both the loop
vectorizer and the SLP vectorizer are executed for
the best coverage. A common configuration is to run
SLP after the loop vectorizer.

2.2 SLP Vectorization
The bottom-up SLP algorithm [35] has been im-
plemented in both GCC and LLVM. Its goal is to
find isomorphic instruction sequences and vectorize
them if profitable. It works by first scanning the
compiler’s intermediate representation (IR), iden-
tifying specific type of instructions, referred to as
seeds. The seeds are instructions which are likely to
form vector sequences. These are usually stores or
instructions that form reduction trees. The seeds
become the first potential vector group and are the
starting point of the algorithm. The algorithm then
searches for more instructions to group together by
following the use-def chains, starting from the seeds
and then following the operands, in an attempt to
extend the SLP graph. The code to be vectorized can
span multiple basic blocks, as long as all instructions
in the group belong to the same basic block.

The flowchart of Figure 1 shows an overview of the
SLP algorithm, with the highlighted section showing
where VW-SLP has introduced its changes. The SLP
algorithm first scans the input IR for vectorizable
seed instructions (step 1), which are instructions
of the same type and bit-width that are likely to
form vectorized code e.g.: (i.) non-dependent store
instructions that access adjacent memory locations
(scalar evolution analysis [5] is commonly used to test
for this), (ii.) instructions that lead to vectorization
idioms such as reduction trees (e.g. a reduction tree
of additions), 9iii.) address calculation instructions
that feed into non-consecutive loads, etc. Compilers
commonly look first for adjacent store seeds first [35],
as they are the most promising seeds. The seeds are
then inserted into a worklist.

The algorithm will then attempt to vectorize the
code at the widest possible vector size and will fall
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Figure 1: Overview of Bottom-up SLP.

back to a smaller size if vectorizing at the wide vec-
tor failed. The intuition behind this is that wider
vectors lead to better performance and should there-
fore be tried out first. To that end, the algorithm
splits the seeds into vectorization-width sizes (step3).
Initially, the vector width is set to the largest valid
size that the target architecture can execute (for
that particular data type), limited by the number of
available seeds. For example, for Intel AVX2 the tar-
get architecture can execute 4-wide vectors of 64-bit
integers, so if we have more than 4 seeds available,
our seeds will form groups of four.
Next, the algorithm gets a seed group from the

worklist (step 3) and starts to build the SLP graph
(step 4). Building the SLP graph involves forming
groups of potentially vectorizable instructions by
following the dependence graph (use-def chains) to-
wards the definitions (bottom-up). This is the ap-
proach followed in both GCC’s and LLVM’s imple-
mentations of the SLP vectorizer [35]. Each group
contains the scalar instructions that are candidates
for vectorization, but it also carries some additional
auxiliary data such as the group’s cost (see next
step). Once the graph-building process encounters
instructions that cannot form a vectorizable group
(e.g, due to non-matching opcodes), it forms a non-
vectorizable group which indicates that scalar-to-
vector data movement is required. Moreover this
group carries the additional cost introduced by these
instructions that will insert the scalar data into vec-
tors. At this point the algorithm stops exploring this
path any further as vectorization cannot proceed.

Listing 1: Simplified SLP graph generation.
1 build_graph(instrs) {
2 // i. Termination conditions
3 if instrs not vectorizable: return
4 // ii. Append new node to graph
5 graph.add(new_group_node(instrs))
6 // iii. Operand ordering based on opcode
7 reorder_operands(instrs.operands)
8 // iv. Recursion for each group of operands
9 for operands in instrs.get_operands():

10 build_graph(operands)
11 }

VW-SLP improves the SLP-graph formation by
not bailing out immediately upon encountering such
non-vectorizable instruction groups. Instead, it at-
tempts to extend the graph towards both narrower
and wider instruction groups, leading to better vec-
torization coverage.

After constructing the SLP graph, the algorithm
needs to estimate the performance benefits of the
vectorized code (step 5) in order to decide whether
or not to actually use the vectorized code or keep
the scalar version. This is done with the help of
the compiler’s target-specific cost model. The cost
of the graph is equal to the sum of the savings
from converting each group of scalar instructions
into vector form (the lower the cost the better) plus
the overheads for gathering the inputs of the vector
instructions. In step 6 the cost is compared against
a threshold (usually 0) to determine whether code
generation of the vector code should proceed (steps 7
and 8). If so, the compiler modifies the intermediate
representation code by replacing the groups of scalar
instructions with their equivalent vector instructions
(step 7), and emits any insert or extract instructions
required for the flow of data between the vector
and scalar instructions (step 8). But if the cost of
vectorization is higher than that of the scalar code,
the code remains unmodified. Next, the current seed
group is removed from the worklist (step 9) and the
process repeats until we have processed all seeds in
the worklist (step 10).

Once all seed groups of the current Vectorization
Width have been processed, the algorithm falls back
to a smaller width of half the size if possible (steps
11, 12 and back to step 2).

2.3 SLP Graph Generation
The SLP Graph is generated in step 3 with the help
of the recursive function build graph(), as shown
in Listing 1. This function is initially called with the
group of seed instructions as its inputs.
The build graph() recursive function (line 1)

has four distinct steps: (i.) check the termination
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conditions2 (line 2), (ii.) build the vectorizable nodes
and connect them to the rest of the SLP graph (line
4), (iii.) perform operand reordering if it is legal and
required (line 6). Only commutative instructions
are legal candidates for reordering (not shown for
brevity). In vanilla SLP, reordering considers the
opcode of the operands of the current instruction,
and in the case of loads whether or not they are
consecutive3.
(iv.) Finally, the function calls itself recursively,

once for each operand group (commonly a group
for the left operands and another group for the
right operands). In this way, the function continues
growing the graph up the use-def chains (line 8).

2.4 Existing Variable-Width
Strategy

The existing SLP algorithm can adapt to the variable
vector widths in two separate ways: (1.) It considers
the gathering points (i.e. the points where vectoriza-
tion stops) as new seeds. It will consequently attempt
to form a new SLP-graph starting from these seeds,
but at smaller vector widths. The end result is code
that may be vectorized with two different vector
widths: i. a larger width until the new seeds that
form gathering point, and ii. a narrower width from
the new seeds forward. (2.) It can fall back to nar-
rower widths when it fails to generate a profitable
SLP-graph with the current width.
Even though this strategy is adequate for some

cases, it has a fundamental weakness. If the wide
SLP-graph fails to be profitable, no new seeds will
be generated for it, so the first point of its strategy
becomes ineffective. Now SLP will fall back to the
narrower width (point 2 of the strategy). But, in
this way, it will not generate vector code with mixed
width, but rather narrow vector code in the best case.
This is sub-optimal compared to the proposed per-
instruction variable-width vectorization approach,
as we show in Section 3.

3 MOTIVATION
This section motivates VW-SLP with examples that
highlight the weaknesses of the existing SLP algo-
rithm, while demonstrating how VW-SLP overcomes
them.

2 The instructions must be: i) scalars, ii) isomorphic, iii)
unique, iv) in the same basic block, v) schedulable, and vi)

not yet in the SLP graph.
3As an example of operand reordering, if our input is 𝐴[𝑖] =
𝐵[𝑖] + 𝐶[𝑖] and 𝐴[𝑖 + 1] = 𝐶[𝑖 + 1] + 𝐵[𝑖 + 1], the second

statement will become 𝐴[𝑖+ 1] = 𝐵[𝑖+ 1] + 𝐶[𝑖+ 1] to help

match the operands of the first statement.

3.1 Shortening the Vector Width
This example shows how vanilla SLP fails to generate
optimal code when the source code’s available vector
parallelism changes from 4-wide to 2-wide within the
block. The source code is in Figure 2(a) and the use-
def dependence DAG for it is shown in Figure 2(b).

A[i+0]=B[i+0]−(C[i+0]&D[i+0]);

A[i+1]=B[i+1]−(C[i+1]&D[i+1]);
A[i+2]=E[i+0]− F[i+0];

A[i+3]=E[i+1]− F[i+1];

uint64_t A[],B[],C[],D[],E[],F[];
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Figure 2: Vectorization Width Shortening.

Initially, state-of-the-art SLP will attempt to vec-
torize the code using the widest possible vectors
for the seeds it has collected. In this example, the
seeds are the four consecutive stores to A[]. It will,
therefore, attempt 4-wide vectorization, as shown
in Figure 2(c). The four stores (S) are vectorizable
and they form a vectorizable (green) group node in
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Figure 2(c). Next, SLP follows the use-def chains
towards the definitions and attempts to group the
four subtractions (-), which also lead to another vec-
torizable (green) group node. At this point both the
left and right operands, are non-vectorizable. On the
left hand side we have loads from B[i], B[i+1], E[i]
and E[i+1], which cannot form a 4-wide vector load
because they are not accessing consecutive memory
addresses; instead they need to remain scalar (red
group node) and their values have to be gathered
into the consuming vector. On the right hand side
we have two bit-wise ands (&) and two loads from
F[i] and F[i+1]. These cannot form a 4-wide vector
either (because the opcodes do not match), so they
are also placed inside a red group node. Since all
paths ended in non-vectorizable groups, the graph
construction cannot proceed any further.
At this point SLP needs to determine whether

it is profitable to generate vector code, given the
SLP graph of Figure 2(c). This is the job of the cost
model. It computes the cost of each node in the SLP
graph (integers near the group nodes of Figure 2(c)).
The cost is calculated as the difference VectorCost−
ScalarCost, with negative cost values implying better
performance of the vector code compared to the
equivalent scalar code4. It is a metric of the overhead
this group would introduce if converted into a vector.
A typical ALU instruction (e.g., an integer ADD) has
a cost of 1 in both scalar and vector form, therefore a
group cost of −3 (VectorCost = 1, ScalarCost = 4)
is quite common for a vectorizable group of four
ALU instructions. The actual cost values come from
querying the compiler’s cost model5. Figure 2(c)
has a total cost of +2 for the whole graph, which
suggests that the code should remain scalar.

Since 4-wide vectorization failed, SLP will fall back
to 2-wide vectorization (that is steps 11, 12 and back
to 2 in Figure 1). The newly formed graph is shown
in Figure 2(d). The algorithm operates twice, once
for the stores to A[i], A[i+1] which creates the
SLP graph of the left hand side of Figure 2(d), and
once for the stores to A[i+2], A[i+3] creating
the SLP graph of the right hand side. Both graphs
are fully vectorizable, one with a cost of -6 and the
other with a cost of -4. The 2-wide vectorized code
is clearly faster than scalar code.

4The vectorization cost also accounts for the additional cost
of extracting intermediary values with external uses.
5 The compiler’s cost model provides a target-dependent

cost estimation that approximates the cost of an interme-

diate representation (IR) instruction when lowered to ma-
chine instructions. Our examples are based on LLVM’s target-

transformation interface (TTI) for the target Intel processor.

If we take a closer look into both Figures 2(c)
and 2(d), we can observe that neither the 4-wide or
the 2-wide approach follow the best vectorization
strategy. In the 4-wide SLP graph of Figure 2(c)
SLP managed to successfully vectorize the code, up
until the subtractions (-). While in the 2-wide SLP
graph of Figure 2(d), vectorization works fine for all
nodes above the subtractions.

VW-SLP combines the strong points of both. We
argue that the algorithm should adjust to the needs
of the input code and adapt the vector width dynami-
cally while building the SLP graph, at an instruction-
level granularity. This is shown in Figure 2(e). VW-
SLP starts, as usual, with 4-wide vectors up to the
second level of the SLP graph (similarly to Fig-
ure 2(c)). It then realizes that 2-wide vectors are
profitable and switches to 2-wide vectorization for
each of the remaining branches. The transition from
4-wide to 2-wide is not free and requires the use of
one or more data reorganization instructions6, which
we represent with a single Shuffle group node
(light blue box). Please note that the Shuffles
rever to LLVM’s shufflevector IR instructions
which can perform both (i) the common “shuffling”
of operands, and (ii) “blending” of two vectors into
one by selecting the individual lanes among them.
The end result is an SLP-graph that combines the
best parts of the fixed 4-wide and the 2-wide vec-
torization attempts of the state-of-the-art SLP algo-
rithm.

3.1.1 Shortening with Repeated Instructions. A
sub-problem of the generic shortening case is when
a sub-group of instructions repeats within a group.
For example if the 4-wide group contains (I1 I2
I1 I2), then VW-SLP is able to shorten it as well,
but instead of creating two 2-wide vector branches
of (I1 I2), only one gets created.

3.1.2 Comparing 2-wide vs 4-wide Costs. A closer
look into the costs reported in Section 3.1, and
more specifically in Figures 2(d) and 2(e), can raise
questions about whether the 2-wide SLP cost of
−6 + (−4) = −10 would be similar to the −10 cost
of VW-SLP. This is a legitimate concern since the
total cost savings of VW-SLP are comparable to
that of SLP. However, in practice, longer vectors
will usually lead to higher performance compared
to shorter ones, due to the higher throughput that
the wider vectors can achieve on the target archi-
tecture. This also explains why SLP will always try

6When the Shuffle node gets lowered, it can generate dif-

ferent instructions, depending on the actual reorganization

performed. Therefore its cost can vary, depending on the
action performed.
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to form longer vectors before forming shorter ones.
To further support our claim, the performance of all
the examples, including this code, are reported in
Section 5.1.

3.2 Shortening with Permutation

A[i+0]=B[i+0]−(C[i+1]&D[i+1]);

A[i+2]=E[i+0]−(C[i+0]&D[i+0]);
A[i+1]=B[i+1]− F[i+1);

A[i+3]=E[i+1]− F[i+0];

uint64_t A[],B[],C[],D[],E[],F[];
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Figure 3: Vectorization Width Shortening
with Permutation.

The example of Section 3.1 showed that vanilla
SLP failed to vectorize some code at 4-wide SIMD,
but succeeded in fully vectorizing it at 2-wide SIMD.
Falling back, however, to shorter SIMD sizes will not
always guarantee full vectorization. This is demon-
strated by the example in Figure 3.
The input code in Figure 3(a) is very similar to

that of Figure 2(a), with the difference being that
the second operand of the subtractions are shuffled

across lanes. This is more obvious if you compare
the DAGs of Figure 3(b) against Figure 2(b). There-
fore, we expect a very similar 4-wide SLP graph in
Figure 3(c) to the one in Figure 2(c). The main dif-
ference is that the second operand of the subtraction
group contains a different mix of instructions than
before (& L & L) instead of (& & L L), but it is
still not vectorizable. Therefore the 4-wide SLP still
fails with a cost of +2.

Once again vanilla SLP falls back to 2-wide vector-
ization. It generates a pair of SLP graphs as shown
in Figure 3(d). In this example, however, they do
not get fully vectorized due to an opcode mismatch
on the second operand of the subtraction group in
both graphs. The non-vectorizable group is (& L)
for both graphs.

VW-SLP will attempt to shorten the vectors at the
points where it encounters non-vectorizable groups
of the current vectorization width. Since shortening
is not free and requires data shuffling anyway, VW-
SLP will attempt to get the best permutation of the
new shorter vectors, which may or may not add an
additional cost as its overhead could be similar to the
existing shuffling. Therefore, when the new shorter
groups are created for the right-hand side operands
of the subtraction group (& L & L), it will form a
group of (& &) and (L L), instead of the naive (& L)
and (& L). This allows VW-SLP to form vectorizable
shortened groups and keep vectorizing further on,
as illustrated in Figure 3(e). The end result is an
identical SLP-graph compared to Figure 3(e) with a
very similar cost.

3.3 Widening the Vector Width
So far, in Sections 3.1 and 3.2, we showed how the
shortening strategy enables the vectorization to con-
tinue with shorter vector widths while still benefiting
from larger vector widths. In this example, we show
that increasing the vectorization width can also be
beneficial.
Given the code of Figure 4(a) that corresponds

to the DAG of Figure 4(b), vanilla SLP will build
a 2-wide SLP graph like the one shown in Fig-
ure 4(c). Vectorization proceeds fine until the loads
are reached, which are not accessing consecutive
memory addresses, and therefore remain scalar, which
requires a gather operation. The cost model returns
a cost of +2 which is not profitable for vectorization.
Please note that there is neither a shorter vector
width to try (we cannot go narrower than 2-wide),
nor is there a 4-wide seed available to initiate a 4-
wide vectorization attempt. Therefore the decision
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is final and this code does not get vectorized by the
existing SLP algorithm.

uint64_t tmp0=C[i+0]&D[i+0];
uint64_t tmp1=C[i+1]&D[i+1];
uint64_t tmp2=C[i+2]&D[i+2];
uint64_t tmp3=C[i+3]&D[i+3];

A[i+0]=B[i+0]+(tmp0−tmp1);

A[i+1]=B[i+1]+(tmp2−tmp3);

uint64_t A[],B[],C[],D[];
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Figure 4: Vectorization Width Widening.

Let’s consider how VW-SLP will attempt to vec-
torize this code (see Figure 4(d)). Once again, vec-
torization starts at 2-wide mode until it reaches an
instruction group with all operands of the same op-
code which may be considered for widening. This
group is the 2-wide group of subtractions. All of
its operands are bit-wise and (&) operations which
could potentially form a 4-wide vector. VW-SLP
will consider both this new 4-wide vector and the
default 2-wide ones and keep the best. In this exam-
ple, switching to the 4-wide vectors proves profitable
since all the loads are consecutive and the gains
from vectorizing 4-wide more than make up for the
additional +4 shuffling cost. According to the cost
model, the total cost is -9, which is profitable to
vectorize.

As expected, widening can also explore the per-
mutations of the input at the widening/shuffling
point, similarly to Section 3.2. This can make a big
difference in the applicability of widening as it can
improve its chances of succeeding.

4 VARIABLE-WIDTH SLP
VW-SLP introduces several changes at the core of
the SLP algorithm, the formation of the SLP-graph
(the highlighted step 4 of Figure 1). As already shown
in the examples of Section 3, the graph formation is
critical for the effectiveness of the vectorizer as it is
the step where the code’s isomorphism is explored.
The changes introduced by VW-SLP improve the al-
gorithm’s capability in extracting SIMD parallelism
by adjusting to the vector width requirements of the
code at an instruction granularity.

4.1 Shortening Strategy
While building the SLP-graph, SLP may reach in-
structions that cannot be grouped into a vectorizable
group node (Listing 2, line 50). A common reason for
this is that the opcodes do not match. At this point
vanilla SLP will create a non-vectorizable group and
will bail out (line 55).

Instead, VW-SLP considers such cases as oppor-
tunities for vector-width resizing, since there is a
chance of finding isomorphism within a sub-group of
these instructions. It is the job of buildGraphVW()
(line 53) to create multiple narrower instruction sub-
groups (line 26) that could be potentially vectorized.
If any of these narrower branches proves both vec-
torizable and profitable (lines 27 to 28), then the
algorithm could potentially continue vectorizing be-
yond such points, with a narrower vector width (line
29), as shown in Figure 2(e).

Figuring out which sub-groups to create involves
the following steps. First, the non-vectorizable in-
structions have to be grouped into vectorizable sub-
groups using the createSubGroups() function
(Listing 2, line 26). The body of this function is
not listed in the Listing 2, due to lack of space, but
its operation is demonstrated in Figure 5. Given a
group of instructions (Instrs), they are partitioned
based on their opcodes into sub-groups as shown
in Figure 5(c). Then the sub-groups are pruned.
All sub-groups with illegal sizes are removed and
the rest are shrinked down to the nearest power of
two (or any number that is allowed by the target
architecture). This results in zero or more vectoriz-
able groups of smaller size, compared to the original
group, and in a set of gathers for the remaining non-
vectorizable scalar instructions. In Listing 2, line
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Figure 5: Forming vectorizable sub-groups
for shortening.

26, the sub-groups are returned and appended onto
SubOps.
Shortening does not come for free, since depend-

ing on the actual data shuffling performed, it may
require one or more additional instructions. In order
to maximize the profitability of this step, VW-SLP
can explore a number of possible permutations for
each of the shorter groups7 as shown in Listing 2,
line 5 with the getPermutations() function.
Next, VW-SLP needs to perform a local perfor-

mance evaluation of these options, that is: (i.) gath-
ering, just like vanilla SLP, (ii.) forming shortened
vectors, and (iii.) forming shortened vectors that
are a permutation of the ones in the previous step.
To that end, it temporarily continues building the
graph for all candidates (with the loop of line 6)
until a fixed exploration depth (lines 8 and 9), and
runs the cost model on it (line 11). By comparing
the costs returned for each case (lines 13 to 15), it
selects the best option, flushes the temporary graph
state (line 17), and continues building the graph as
usual using the best instructions (lines 28 and 29).
Please note that VW-SLP evaluates both the newly
created variable-width graphs and the original SLP
one. Therefore, VW-SLPis conceptually a superset
of SLP.
A similar strategy is followed when instructions

repeat within an instruction group, i.e., when the
exact same instruction is present in more than one
place in the group. Once again, several sub-groups
are generated, including any gathers, and are evalu-
ated with or without their permutations.

7We have a strategy for reducing the complexity. Please see
Section 4.3.

Listing 2: VW-SLP algorithm for SLP-Graph
1 // Explores AllInstrs, and returns the one
2 // with the best cost.
3 getBestInstrs(AllOps, Depth) {
4 if (ExplorePermutations)
5 AllOps.append(getPermutations(AllOps, LIMIT))
6 for (TmpOps in AllOps)
7 // Build Graph temporarily until MaxDepth
8 MaxDepth = Depth + DEPTH_EXPLORATION_LIMIT
9 buildGraph(TmpOps, Depth)

10 // Run the cost model to get its cost.
11 Cost = getGraphCost()
12 // Keep the best cost.
13 if (Cost < MinCost)
14 MinCost = Cost
15 BestSubInstrs = TmpOps
16 // Discard the temporary state of the graph.
17 resetGraphState()
18 return BestSubInstrs
19 }
20
21 // VW-SLP-specific buildGraph()
22 // Returns true if we changed the vector width.
23 buildGraphVW(Instrs, Depth, Type) {
24 if (Type == SHORTEN) // Shortening
25 SubOps.append(Instrs)
26 SubOps.append(createSubGroups(Instrs))
27 BestSubOps = getBestInstrs(SubOps, Depth)
28 if (BestSubOps != Instrs)
29 buildGraph(BestSubOps, Depth+1)
30 return true
31 if (Type == WIDEN) // Widening
32 WidenedOps.append(Instrs)
33 WidenedOps.append(createWidenedGroup(Instrs))
34 BestWidenedOps = getBestInstrs(SubInstrs)
35 if (BestWidenedOps != Instrs)
36 buildGraph(BestWidenedOps, Depth+1)
37 return true)
38 return false
39 }
40
41 // Entry point for building the SLP-Graph.
42 // In: The vector of seed instructions
43 // Out: The SLP-graph
44 void buildGraph(Instrs, Depth) {
45 // If we reached the depth limit, return
46 if (Depth > MaxDepth)
47 createNonVectorizableGroup(Instrs)
48 return
49 // Group of Instrs is not vectorizable
50 if notVectorizable(Instrs)
51 // Try Shortening
52 if (VW-SLP
53 && buildGraphVW(Instrs, Depth, SHORTEN))
54 return
55 createNonVectorizableGroup(Instrs)
56 return
57 // Try Widening
58 if (VW-SLP && areBinaryInstructions(Instrs)
59 && buildGraphVW(Instrs, Depth, WIDEN))
60 return
61 // Vanilla SLP recursion
62 createVectorizableGroupFor(Instrs)
63 for (Operands in Instrs’ operands)
64 buildGraph(Operands, Depth+1)
65 }

4.2 Widening Strategy
VW-SLP attempts to widen the vector width at
each vectorizable node of binary instructions, when-
ever it is both possible and profitable compared to
vanilla SLP. After creating a group node of binary
operations, VW-SLP will attempt to flatten all the
instructions of the group and continue with a 2x
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Figure 6: Widening of both operands of the
group into a single wider vector.

wider vector. For this to be legal, all the opcodes of
the wider vector need to be identical (and should ob-
viously be allowed to be scheduled together). When
this is the case, VW-SLP proceeds with either: (i.)
this new wider vectorizable group, (ii.) one of its
permutations, or (iii.) the original groups. VW-SLP
explores all three cases and keeps the most profitable
one using the exact same method as in Section 4.1
(Listing 2 lines 32 to 34). With the best vectorizable
group in BestWidenedOps, the construction of the
SLP graph resumes (line 37).

For widening to be profitable, vectorization should
succeed for at least a few more nodes above the new
wider vector. This is to amortize the cost of the
wide data shuffling. As expected, and as shown in
Section 5, widening does not succeed as often as
shortening.

4.3 Complexity
VW-SLP adds more complexity to the existing SLP
algorithm in two ways:
1. As already discussed in Sections 4.1 and 4.2, the

evaluation of profitability for both shortening and
widening is based on a local backtracking strategy.
That is, we are temporarily extending the SLP-graph
(Listing 2 line 9) using either wider or shorter vec-
tors, and then we compare the cost of the graph
against the default scheme without variable-width
vectors. If the new cost is better, we discard the
current state. We can limit the complexity added
by this backtracking in two ways. (i.) By building a
temporary SLP-graph of fixed maximum depth (line
8). The reasoning behind this is that bad graphs fail
early. (ii.) By limiting the number of nested explo-
rations to a very small number. The reasoning is
that nesting of shortening and widening is not that
common.
2. Exploring the permutations at the shuffling

points adds yet another dimension of complexity.
This exploration is particularly critical for compilation-
time as it also works in a backtracking fashion to
select the best permutation possible. However, the

complexity can be controlled by limiting the explo-
ration space as follows: (i.) By gradually reducing
the number of permutations we evaluate at each
exploration (Listing 2 line 5), we can allow for more
exploration towards the root of the graph and less to-
wards the leaves. The intuition is that the decisions
made close to the root are more critical than those
made at the leaves. (ii.) We can limit the number of
the nested (outstanding) permutation explorations
that we are evaluating. The intuition behind this
is that nested explorations provide diminishing re-
turns. (iii.) We can impose a global limit the overall
number of permutations that are explored to a fixed
number.
By controlling these knobs, the user has full con-

trol over the trade-off between exploration time and
performance benefits. We have empirically found
that reducing the permutation explorations from
8 to 0 as the depth increases, using the formula
(8− 𝑑𝑒𝑝𝑡ℎ), is a good trade-off. Similarly, disabling
both nested permutation explorations and nested
widening/shortening explorations is not harming per-
formance significantly. For more insights into how
these knobs affect compilation time and performance,
please refer to Section 5.2, where we show a detailed
breakdown of both performance and compilation
time while varying some of these tuning knobs.

5 RESULTS
We implemented VW-SLP in the development branch
of LLVM 7 as an extension to the existing SLP vec-
torizer. We compiled the workloads with the follow-
ing configurations: (i.) O3, which corresponds to
-O3 with all vectorizers disabled, (ii.) SLP, which is
-O3 with only the SLP vectorizer enabled (this is
the state-of-the-art SLP), and (iii.) VW-SLP, which
is -O3 with only the VW-SLP algorithm enabled
instead of SLP.

All C/C++ workloads were compiled with clang
using -O3 -march=skylake -mtune=skylake. The for-
tran benchmarks were compiled with the GCC for-
tran front-end with the help of the DragonEgg [1]
project. The loop vectorizer was disabled across all
configurations. The target platform is a Linux-4.9.0,
glibc-2.23 based system with a 6th generation Intel®
Core� i5-6440HQ CPU and 8 GB RAM. We evalu-
ated our approach on unmodified SPEC CPU2006
and CPU2017 [39]. We also evaluated VW-SLP on
TSVC[7] and NAS[6]. All TSVC kernels shown were
manually unrolled. We applied code massaging on
s319 to expose the 4-wide reduction seed SLP, and
for s123 we assume that the loop condition can be
statically optimized to true. We are not showing
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Table 1: Kernels used for evaluation.

Kernel Benchmark Filename:Line

444-lattice-recalc SPEC’06 444.namd Lattice.H:267
435-inl3220 SPEC’06 435.gromacs innerc.c:18895
435-inl3330 SPEC’06 435.gromacs innerc.c:19210
435-inl3430 SPEC’06 435.gromacs innerc.c:21238
464-satd8x8 SPEC’06 464.h264ref mv-search.c:1118
464-find-sad16x6 SPEC’06 464.h264ref macroblock.c:4226
h264enc-dct-chroma MediabenchII h264enc block.c:1517

Table 2: Variants used for evaluation.

Variant Description

O3 -O3 (No vectorizer enabled)
SLP -O3 + SLP (No loop vectorization)
VW-SLP-S Only Shortening (No Permutation)
VW-SLP-SP Only Shortening with Permutation
VW-SLP-W Only Widening (No Permutation)
VW-SLP-WP Only Widening with Permutation
VW-SLP VW-SLP-WP + VW-SLP-SP

VW-SLP-NESTx VW-SLP + nested width explorations
VW-SLP-PERMx VW-SLP + nested permutations
VW-SLP-NESTx-PERMy VW-SLP-NESTx + VW-SLP-PERMy

the few benchmarks that did not trigger VW-SLP
at all, as they perform exactly the same as SLP.
We also extracted whole functions (kernels) from
SPEC CPU2006 and Mediabench II [12] (Table 1)
to help focus on code that triggers VW-SLP. In the
kernel results we included the motivating examples
of Section 3 for completeness. For all results, we
report the average of 10 executions, after skipping
the first warm-up run. The error bars show the stan-
dard deviation. The static cost we report is LLVM’s
TTI-based cost (see Section 2.2).

5.1 Performance
In order to provide more insights into the individual
contribution of each proposed technique, we provide
a full breakdown. The variants we used are described
in Table 2. The performance breakdown is shown in
Figure 7, while the sum of the static cost collected
by the vectorizer is reported in Figure 8.

For all the VW-SLP results reported we use: i) no
nesting of the shortening/widening techniques (only
one allowed per graph), ii) no nested permutation
exploration, iii) a maximum of 8 permutations per
permutation point, and iv) an exploration depth
limit of 12.

On average, the variants of VW-SLP do improve
performance compared to SLP. The most effective
variant tends to be the shortening one. This is ex-
pected, as it is easier to find small sets of isomorphic
instructions compared to a large set, i.e, shorten-
ing is easier than widening. Nevertheless, 464-find-
sad16x16 improves explicitly due to widening.

Permutation is beneficial for 464-satd8x8, suggest-
ing that: (i.) it is common for vectorization to stop
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Figure 8: Static Cost (the higher the better).

because of only some of the lanes becoming non-
isomorphic, and (ii.) the additional overhead of the
permutation is hard to get amortized, except for
large graphs.

5.1.1 Full Benchmarks. The VW-SLP algorithm
gets triggered numerous times across several bench-
marks in the SPEC 2006 and 2017 suites, as shown
in Figures 9 and 11. When triggered, it improves
the cost in the majority of benchmarks, as shown in
Figures 9 and 11. On average, the benchmarks get
a cost improvement of almost 20%, while many of
them get a lot more than that. A notable exception
is 456.hmmer, where VW-SLP has a cost of -181,
which is worse than SLP’s -221. Such cost regres-
sions are possible because the algorithm is greedy by
design. If VW-SLP improves the cost of one region,
it will accept this solution even though that may
harm vectorization for a future region. More holistic
approaches would fix such issues, at the expense of
higher compilation time.
Whether these static cost improvements lead to

run-time performance improvements depends on
whether the code that got vectorized was in a hot
execution path. As shown in Figures 10 and 12, both
SPECint and SPECfp improve with VW-SLP. Inte-
ger workloads that operate on RGB data are usually
good candidates for SLP-style algorithms, therefore
they can potentially improve further with the help of



Variable-Width SLP PACT ’18, November 1–4, 2018, Limassol, Cyprus

VW-SLP. There are several benchmarks from both
the floating-point and the integer suites that improve
considerably, such as 447.dealII and 525.x264 r. It
is interesting to note that even though 456.hmmer
had a worse static score, because VW-SLP favored
one code region over a future one, this turned out
to be beneficial for performance. On the other hand,
444.namd and 433.milc had worse performance, even
though their scores were increased by about 4% and
28%, respectively. Such discrepancies between the
static cost and the actual performance are expected
due to the inaccuracies of the cost model. Over-
all, VW-SLP provides significant improvements over
SLP.
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Figure 9: Static Cost of SPECfp (Full Bench-
marks) normalized to SLP (the higher the
better).
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Figure 10: Performance of SPECfp (Full
Benchmarks) Normalized to SLP.

5.1.2 TSVC and NAS. Our evaluation on these
smaller benchmarks shows that VW-SLP can achieve
larger speedups. Please note that, just like in Sec-
tion 5.1.1, we are only showing those cases where
VW-SLP triggered at least once, as for the rest of
them both VW-SLP and SLP perform exactly the
same.
The plot of static cost in Figure 13 shows that

VW-SLP improves benchmarks from both suites. In
case of s123 and s127 SLP is unable to vectorize

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

525.x264-r
403.gcc

464.h264ref

456.hmmer

473.astar
502.gcc-r

541.leela-r

GMean

 

SLP VW-SLP

Figure 11: Static Cost of SPECint (Full
Benchmarks) normalized to SLP (the higher
the better).
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Figure 12: Performance of SPECint (Full
Benchmarks) Normalized to SLP.

the code at all (leading to infinite normalized cost
improvement). However, as Figure 14 shows, since
the tests in TSVC are much smaller, the speedups
that we get are far greater. Both BT and LU from
the NAS suite show static cost improvements with
VW-SLP compared to SLP. However, BT shows a
3% improvement while LU performs the same as
SLP, since the optimized code was not in a hot code
path.

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

s123 s127 s319 bt lu

inf inf

 

SLP VW-SLP

Figure 13: Static Cost of TSVC and NAS nor-
malized to SLP (the higher the better).
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1.00x

1.10x

1.20x

1.30x

1.40x

1.50x

1.60x

1.70x

1.80x

1.90x

2.00x

s123 s127 s319 bt lu GMean

 

SLP VW-SLP

Figure 14: Performance of TSVC and NAS
normalized to SLP.

5.2 Compilation Time
We measured the compilation wall time, normalized
it to O3, and showed the results in Figure 15. The
kernel compilation time tests show the worst-case
scenario, since the ratio between “code with SLP
opportunities” and “total code” is very high. When
compiling full benchmarks, the compilation time
increase is usually insignificant.
SLP has an overall overhead of about 14% over

O3, while VW-SLP about 31% across the kernels.
We observe that when the overhead of SLP over O3
is high, then the overhead of VW-SLP over SLP is
also high. This is expected because the more time
the compiler spends in SLP, the higher the number
of non-vectorized groups encountered, and therefore
the more the exploration that VW-SLP needs to
perform.
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Figure 15: Normalized Compilation time.
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Figure 16: Compilation time breakdown nor-
malized to O3.
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Figure 17: Performance breakdown normal-
ized to O3.

Compilation time can be traded off for more com-
plete exploration (and hopefully better performance),
by adjusting one of the several knobs that control
VW-SLP. In Figures 16 and 17 we show a more
complete breakdown of the compilation time and
the corresponding performance for three of the work-
loads. We varied two of the exploration parameters
to provide more insights into the trade-offs involved.
The first one is the maximum nesting allowed for ex-
plorations (that is whether we allow an exploration
for shortening or widening, while a previous one is
already ongoing, and how many such overlapping ex-
plorations are allowed). It is marked with the suffix
-NESTx. Please note that VW-SLP is equivalent to
VW-SLP-NEST0. The second one is the maximum
number of permutations allowed per permutation
point, and is marked with the -PERMx suffix. Finally
we enabled both at once (-NESTx-PERMy).

The compilation time overhead (Figure 16) varies
depending on the workload. Some workloads, like
464-find-sad16x16, can consume up to 5.8x more
compilation time if we allow many levels of nested
explorations for vector-width resizing along with a
large number of permutations. However, as shown in
Figure 17, the additional compilation time for this
workload has diminishing performance returns. We
empirically found that no nesting and 8 permuta-
tions provide a good trade-off.

6 RELATED WORK
High Performance Computing (HPC) has relied on
vector machines to accelerate HPC workloads for
several decades, while scientific workloads have been
accelerated by both commercial [28, 36] and exper-
imental [16, 28, 36] vector machines. General pur-
pose CPUs have also adopted vectorization technol-
ogy through the use of short SIMD vector instruc-
tions [15]. Graphics processors (GPUs) [20] imple-
ment similar vector datapaths for achieving high
throughput. Wide parallel computation on GPUs
is possible thanks to data-parallel graphics APIs
(e.g., OpenGL [38], DirectX [13]) or languages like
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CUDA [27] or OpenCL [24], where the programmer
explicitly exposes the available parallelism.

6.1 Loop Auto-Vectorization
Auto-vectorization techniques have traditionally fo-
cused on vectorizing loops [41]. The basic implemen-
tation conceptually strip-mines the loop by the vec-
tor factor and widens each scalar instruction in the
body to work on multiple data elements. The effec-
tiveness of loop vectorizing compilers has been stud-
ied by Maleki et al. [22]. Many fundamental problems
of loop vectorization have been addressed by early
work on the Parallel Fortran Converter [2, 3] and oth-
ers [9, 17, 40]. Since then, numerous improvements
to the basic algorithm have been proposed in the lit-
erature and production compilers [4, 10, 25, 26, 34].

6.2 SLP Auto-Vectorization
SLP Vectorization was introduced by Larsen and
Amarasinghe [18]. It is a complementary technique
to loop vectorization which focuses on vectorizing
straight-line code instead of loops. Similar straight-
line code vectorization algorithms have been imple-
mented in compilers such as GCC [11] and LLVM,
with bottom-up SLP (Rosen et al. [35]) being widely
adopted due to its low run-time overhead and its
good coverage. In this paper we use the LLVM im-
plementation of this state-of-the-art bottom-up SLP
algorithm as the baseline.

Since its original work, several improvements have
been proposed for the straight-line-code (SLP-style)
vectorization. Shin et al. [37] propose an SLP-based
framework that makes use of predicated execution
to convert the control flow into data-flow depen-
dence, thus allowing it to become vectorized by a
straight-line code vectorizer. Liu et al. [21] present a
vectorization framework that generates vectorizable
groups by exploring pairs of vectorizable instructions
and forming vectors out of the most profitable ones.
[23] improves upon this algorithm with an ILP solver
to better explore the space, which results in better
performance, but with impractically long compila-
tion times. Huh and Tuck [14] propose a different
approach for identifying isomorphism in SLP vec-
torization based on growing the vectorizable graph
from small predefined patterns. The Park et al. [29]
approach succeeds in reducing the overheads associ-
ated with vectorization such as data shuffling and
inserting/extracting elements from the vectors.
The widely used bottom-up SLP algorithm has

been improved in several ways. Porpodas et al. [32]
propose PSLP, a technique that pads the scalar

code with redundant instructions, to convert non-
isomorphic instruction sequences into isomorphic
ones, thus extending the applicability of SLP. Just
like VW-SLP-S, PSLP can vectorize code when some
of the lanes differ, but it is most effective when the
non-isomorphic parts are only a short section of
the instruction chain. VW-SLP, on the other hand,
works even if the chain never converges. In [31], the
SLP region is pruned to scalarize groups of instruc-
tions that harm the vectorization cost, while in [30]
a larger unified SLP region is used, that overcomes
limitations associated with the inter-region communi-
cation and unreachable instructions. Zhou et al. [43]
present a vectorization technique that reduces the
data re-organization overhead by considering both
intra- and inter-loop parallelism, that improves upon
the loop-aware SLP approach of [35], while in [42]
vectorization is enabled for SIMD widths that are
not supported by the target hardware. Finally, Look-
Ahead SLP [33] proposes an improved SLP algorithm
that focuses on better vectorizing chains of com-
mutative operations. It introduces the concept of
the multi-node and an improved operand reordering
heuristic based on knowledge collected by scanning
the code beyond the operations being considered for
vectorization.

VW-SLP is orthogonal to these techniques. It is
the first algorithm, that we are aware of, that intro-
duces a more powerful exploration of the underlying
IR by adapting the vector width to the requirement
of the input at an instruction granularity.

7 CONCLUSION
We presented VW-SLP, a bottom-up SLP-based
auto-vectorization algorithm that can adjust the vec-
tor width at an instruction granularity. This allows
the algorithm to vectorize at either wider or narrower
widths within the same block of code, as dictated
by the available vector parallelism. The end result is
a more powerful code exploration for isomorphic in-
structions, and therefore increased vectorization cov-
erage and better performance compared to the state-
of-the-art. VW-SLP was implemented in LLVM and
was evaluated on wide-range of benchmarks on a
real machine. The performance results show that it
improves performance considerably without a pro-
hibitive compilation-time overhead.
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