
An algebraic framework for parallelizing
recurrence in functional programming

Rodrigo C. O. Rocha12, Lúıs F. W. Góes1, Fernando M. Q. Pereira2

1Institute of Exact Sciences and Informatics, PUC Minas
2Department of Computer Science, UFMG

{rcor,fernando}@dcc.ufmg.br, lfwgoes@pucminas.br

Abstract. The main challenge faced by automatic parallelization tools
in functional languages is the fact that parallelism is often hidden un-
der the syntax of complex recursive functions. In this paper, we propose
an algebraic framework for parallelizing – automatically – two special
classes of recursive functions. We show that these classes are comprehen-
sive enough to include several well-known instances. We have used our
ideas to implement a source-to-source compiler in Python to parallelize
Haskell code. We have applied this prototype onto six different recursive
functions, achieving, on a 4-core machine, speedups of up to 2.7x.

Keywords: recursive functions, parallel computing,
functional programming, algebraic framework, abstract algebra

1 Introduction

The advent of multi-core computers has greatly spread the use of parallel pro-
gramming among application developers. Yet, writing code that runs in parallel
is still a difficult and error-prone task. Thus, the automatic parallelization of code
has surfaced as an effective alternative to the development of high-performant
programs [11, 18, 25]. In this sense, functional programming languages appear as
a promising alternative to the development of parallel code. They provide ref-
erential transparency, reducing shared data and eliminating side effects, which
makes automatic parallelization much easier. However, in spite of years of re-
search, automatic generation of parallelism, out of functional code, is not a solved
problem [12, 17]. Testimony of this last statement is the fact that functional code
is still manually parallelized, usually by means of parallel skeletons [4, 6, 17].

The main challenge faced by automatic parallelization tools in functional lan-
guages is the fact that parallelism is often hidden under the syntax of complex
recursive functions. There are several techniques to discover parallelism, such
as work targeting list homomorphisms [5, 13, 20, 15], or the work of Fisher and
Ghuloum [8], who parallelize imperative loops that can be translated as com-
position of functions. Nevertheless, the programming languages community still
lacks approaches to infer parallelism on recursive functions automatically. The
goal of this paper is to contribute to solve this omission by extending the family
of recursive functions that can be parallelized automatically.

The final publication is available at link.springer.com

http://link.springer.com/chapter/10.1007%2F978-3-319-45279-1_10

To achieve this objective, we propose an algebraic framework for parallelizing
two special classes of recursive functions. These functions need to have two core
properties. First: the recursive function must contain only operations that can
be used to define monoids or semirings. Second: the propagation of arguments
between recursive calls has to be defined by an invertible function. The proposed
framework is based on the theory introduced by Fisher and Ghuloum [8]. Those
authors have designed and tested an approach to parallelize imperative loops
by transforming them in recurrence relations defined by the compositions of
associative functions. We go beyond the work of Fisher and Ghuloum in two
ways: (i) we work on recursive functions, instead of imperative loops; (ii) we
provide a more general definition of parallel function composition. The key idea
behind our findings is the fact that algebraic structures such as groups, monoids
and semirings let us decompose recursive functions into simpler components,
which are amenable to automatic parallelization.

To validate the ideas discussed in this paper, we have used them to implement
a source-to-source compiler, in Python, that performs automatic parallelization
of Haskell code. In Section 4 we show how to parallelize six different – and well-
known – recursive functions. Key to efficiency is the fact that we can transform
elements in the family of parallelizable functions into list homomorphisms. This
transformation, which we explain in Section 3, to the best of our knowledge, is
novel. Our experiments show that our technique is effective and useful. We have
achieved speedups of up to 2.7x in a 4-core Intel processor. These results are even
more meaningful if we consider that they have been obtained in a completely
automatic way.

2 Overview

We will use the well-known factorial function as an example to introduce our
ideas to the reader. This function can be defined as follows:

f(x) :=

{
1 if x = 1

x · f(x− 1) otherwise

Factorial is a very simple function, and the reader familiar with the par-
allelization of reductions on commutative and associative operators will know
immediately that this function has a very efficient parallel implementation. Key
to perform this parallelization is the observation that factorial can be re-written
as a sequence of multiplications, e.g.:f(x) = x · (x− 1) · . . . · 2 · 1.

A key property of multiplication – associativity – lets us solve them in a
pairwise fashion. This possibility gives us the chance to run the above expres-
sion in O(lnx) time. The goal of this paper is to be able to apply this kind of
parallelization automatically onto recursive functions. In order to achieve this
objective, we shall be re-writing functions as a composition of simpler functions
which are associative. In the case of factorial, this composition looks like:

f(x) = (f ′x−1 ◦ . . . ◦ f ′2 ◦ f ′1)(1)

How do we find a suitable implementation of f ′i? We first provide this answer
for a family of recursive functions which have the following format:

f(p) :=

{
g0(p) if p = p0

g1(p)⊕ f(h(p))⊕ g2(p) otherwise
(1)

For any function f that can be written in the format above, we show that it is
possible to decompose f into a composition of functions. We first identify h, the
function used to propagate the arguments of f , which we call the hop function.
The hop function must be a well-defined monotonic function, which must have
an inverse. For the factorial example, we have the following hop function h:
h(x) = x− 1, with inverse h−1(x) = x+ 1.

The hop function is fundamental for generating the next arguments of the
sequence of compositions. Because it has an inverse, we use it to know x−1, the
number of functions which will constitute the sequence of compositions. We find
out x − 1 after solving the following equation: p0 = hx−1(p). For the factorial
example, the depth is exactly the initial argument x. After identifying the hop
function and its inverse, we re-write f in a manner suitable for the composition
of functions which does not contain a recursive call, e.g.: f ′i(s) := (i+1) ·s, where
s is the usually called accumulator parameter in funcional composition.

Now, we can write f such as f(x) = (f ′x−1 ◦ f ′x−2 ◦ · · · ◦ f ′2 ◦ f ′1)(1). This
transformation is useful, considering that functional composition is an asso-
ciative operation, which can often be parallelized if it is possible to symbol-
ically compute and simplify intermediate compositions [8]. For instance, for
i > 1 ∈ Z, (f ′i ◦ f ′i−1)(s) = (i+ 1) · (i · s) can be reassociated as (f ′i ◦ f ′i−1)(s) =
((i + 1) · i) · s which is essentially equivalent to the original function regarding
computational complexity. Thus we can evaluate f(x) by computing a reduc-
tion over a list of functions, using the functional composition operator, i.e.,
f(x) = ◦/[f ′x−1, f ′x−2, . . . , f ′1].

Section 3.2 generalizes the factorial example seen in this section. In Sec-
tion 3.3 we extend our framework a bit further, showing that we can also par-
allelize functions in the format below. In this case, we consider two operators ⊕
and �, for which we only require that � be associative, and ⊕ be commutative,
in addition of being associative. Again, the hop function h must have an inverse
function which can be computed efficiently.

f(p) :=

{
g0(p) if p = p0

g1(p)⊕ (g3(p)� f(h(p))� g4(p))⊕ g2(p) otherwise
(2)

3 Automatic Parallelization of Recursive Functions

In this section we formalize the developments earlier seen in Section 2. To this
end, we provide a few basic notions in Section 3.1. In Section 3.2, we show how
to parallelize functions on the format given by Equation 1. In Section 3.3, we
move on to deal with functions defined by Equation 2.

3.1 Technical Background

In the rest of this paper we shall use three notions borrowed from abstract alge-
bra: groups, monoids and semirings. If S is a set, then we define these algebraic
structures as follows:

– A group G = (S,+) is a nonempty set closed under an associative binary-
operation +, which is associative, invertible and has a zero element 0, the
identity regarding +. For each a ∈ S, its inverse −a also belongs to S. A
group need not be commutative. If a group is commutative, it is usually
called an abelian group [21].

– A monoid M = (S,+) is a nonempty set closed under an associative binary-
operation + with identity 0. A monoid need not be commutative and its
elements need not have inverses within the monoid.

– A semiring R = (S,+, ·) is a nonempty set closed under two associative
binary-operations + and ·, called addition and multiplication, respectively [10,
9]. A semiring satisfies the following conditions:
• (S,+) is a commutative monoid with identity element 0;
• (S, ·) is a monoid with identity element 1;
• Multiplication distributes over addition from either side;
• Multiplication by 0 annihilates R, i.e. a · 0 = 0 · a = 0, for all a ∈ S.

Parallelizing functional composition. Functional composition is an associa-
tive binary operator over functions. Previous work [8, 19] has shown that, given a
family of indexed functions F closed under functional composition ◦, a function
ψ : Z × Z → F is a composition evaluator of F iff iψj = fi ◦ fj , for fi, fj ∈ F .
If each function in F and the composition evaluator ψ are constant-time com-
putations, then a sequence of n compositions can be efficiently computed in
O(n/p + ln p), considering p processing units. A functional composition over F
can be evaluated by using the composition evaluator ψ. Thus, given a sequence
of compositions fn ◦ fn−1 ◦ · · · ◦ f1, this sequence can be efficiently computed
using a reduction operator ◦/[fn, fn−1, . . . , f1], since the following equivalence
holds: ◦/[fn, fn−1, . . . , f1] = ψ/[n, n− 1, . . . , 1].

3.2 Monoids

In this section, we generalize the solution presented in Section 2. We provide the
formal description of the mechanism used for parallelizing the factorial recursive
function, regarding general algebraic structures of groups and monoids. Let SG

and SM be sets and M = (SM ,+) a monoid. Let f : SG → SM be a recursive
function defined as:

f(x) :=

{
g0(x0) if x = x0

g1(x) + f(h(x)) + g2(x) otherwise

We assume that each gi : SG → SM are pure and non-recursive functions, i.e.
if a ∈ SG then gi(a) ∈ SM , for i ∈ [0, 2]. Furthermore, we assume that the hop
function h : SG → SG is an invertible and monotonic function over SG.

Proposition 1 The recursive function f : SG → SM can be written as a func-
tional composition.

Proof. We let f ′i : SM → SM be the following non-recursive function:

f ′i(s) = g1((h−1)i(x0)) + s+ g2((h−1)i(x0))

In the above definition, we let h−1 : SG → SG be the inverse function of the
hop h. Function (h−1)i(x0) is the i-th functional power of h−1 : SG → SG.
To transform the recursive function into a composition, it is important to infer
the depth of the recursive stack. Let k > 0 ∈ Z such that hk(x) = x0. Thus
f(x) = (f ′k ◦ f ′k−1 ◦ · · · ◦ f ′2 ◦ f ′1)(g0(x0)) ut

From Fisher and Ghuloum [8], we know that the composition of f ′i can be com-
puted in parallel since, for i > 1 ∈ Z, we have that:

(f ′i ◦ f ′i−1)(s)⇔ g1((h−1)i(x0)) + f ′i−1(s) + g2((h−1)i(x0))⇔
g1((h−1)i(x0)) + [g1((h−1)i−1(x0)) + s+ g2((h−1)i−1(x0))] + g2((h−1)i(x0))⇔
[g1((h−1)i(x0)) + g1((h−1)i−1(x0))] + s+ [g2((h−1)i−1(x0)) + g2((h−1)i(x0))]

Defining the hop function. Let G = (SG,+) be a group with identity 0. If
the hop function h is an invertible and monotonic function, we can calculate k.
Let h be generally defined as h(x) = e1 + x+ e2, where e1, e2 ∈ SG. Then

hk(x) = x0 ⇔
e1 + · · ·+ e1 + e1 + x+ e2 + e2 + · · ·+ e2 = x0 ⇔

ke1 + x+ ke2 = x0 ⇔
x+ ke2 = (−ke1) + x0 ⇔

x+ ke2 − x0 = (−ke1)⇔
x+ (ke2 − x0 + ke1) = 0

that is, ∃k ∈ Z such that k > 0 and (ke2 − x0 + ke1) ∈ SG is the inverse of
x ∈ SG. Given the equality above, k can often be dynamically computed with a
small overhead. If G is commutative, then (ke2 − x0 + ke1) = k(e1 + e2) − x0.
From these notions, we define function h−1, the inverse of the hopping function,
as h−1(x) = (−e1) + x+ (−e2). This equality is true, since:

(h−1 ◦ h)(x) = (−e1) + h(x) + (−e2)⇔
(h−1 ◦ h)(x) = (−e1) + [e1 + x+ e2] + (−e2)⇔
(h−1 ◦ h)(x) = 0 + x+ 0 = x

Computing the function composition using list homomorphism. Thus
far, we have seen how to re-write a function (with certain properties) as a compo-
sition of non-recursive functions. We need now a way to implement this composi-
tion efficiently. To achieve efficiency, we use list homomorphisms. We say that a

function y is a list homomorphism if we have that y(w++ z) = y(w)++ y(z), where
++ denotes list concatenation. In this section we derive a simple implementation
for such a recursive function f : SG → SM by means of list homomorphism.

Proposition 2 Let h′(i) = (h−1)i(x0). Then we can write the functional com-
position f(x) = (f ′k ◦ f ′k−1 ◦ · · · ◦ f ′2 ◦ f ′1)(g0(x0)) as:

f(x) = (+/(g1 ◦ h′) ? [k, k − 1, . . . , 1]) + g0(x0) + (+/(g2 ◦ h′) ? [1, 2, . . . , k]) .

Proof. The functional composition expands as follows:

f(x) = g′1(x0) + g0(x0) + g′2(x0),where:

g′1(x0) = g1((h−1)k(x0)) + g1((h−1)k−1(x0)) + · · ·+ g1((h−1)(x0))

g′2(x0) = g2((h−1)(x0)) + g2((h−1)2(x0)) + · · ·+ g2((h−1)k(x0))

Since h′(i) = (h−1)i(x0), then we can write:

g′1(x0) = g1(h′(k)) + g1(h′(k − 1)) + · · ·+ g1(h′(1))

g′2(x0) = g2(h′(1)) + g2(h′(2)) + · · ·+ g2(h′(k))

Therefore, it is possible to compute g′1 and g′2 using a list homomorphism, i.e.:

g′1(x0) = +/g1 ? (h′ ? [k, k − 1, . . . , 1])

g′2(x0) = +/g2 ? (h′ ? [1, 2, . . . , k])

Where +/` denotes the folding of the operation + onto the list `, and k?` denotes
the mapping of function k onto every element of `. The above expression can
then be simplified as:

g′1(x0) = +/(g1 ◦ h′) ? [k, k − 1, . . . , 1]

g′2(x0) = +/(g2 ◦ h′) ? [1, 2, . . . , k]

ut
3.3 Semirings

We now describe a second family of recursive functions that we can parallelize
automatically by rethinking them under the light of algebraic structures. Let SG

and SR be sets and R = (SR,+, ·) a semiring. Let f : SG → SR be defined as:

f(x) :=

{
g0(x0) if x = x0

g1(x) + g3(x)f(h(x))g4(x) + g2(x) otherwise

where each gi : SG → SR is a non-recursive function. Function h : SG → SG is
the hop. Let f ′i : SR → SR be the following non-recursive function:

f ′i(s) = g1((h−1)i(x0)) + g3((h−1)i(x0))sg4((h−1)i(x0)) + g2((h−1)i(x0))

where (h−1)i(x0) is the i-th functional power of h−1, the inverse function of the
hop function h (see Section 3.2).

In order to transform the recursive function into a composition, again we
must infer the depth of the recursive stack. Let k > 0 ∈ Z such that hk(x) = x0
(see Section 3.2). Thus:

f(x) = (f ′k ◦ f ′k−1 ◦ · · · ◦ f ′2 ◦ f ′1)(g0(x0))

Computing the function composition using list homomorphism . In this
section we derive a simple implementation of a recursive function f : SG → SR

by means of list homomorphism. If h′(i) = (h−1)i(x0), then we can write:

f(x) = φ1(k) + φ3(k)g0(x0)φ4(k) + φ2(k)

where k > 0 ∈ Z such that hk(x) = x0 (see Section 3.2). We have that:

β1(i) = (·/(g3 ◦ h′) ? [k, k − 1, . . . , i+ 1]) g1(h′(i)) (·/(g4 ◦ h′) ? [i+ 1, i+ 2, . . . , k])

φ1(k) = g1(h′(k)) + (+/β1 ? [k − 1, k − 2, . . . , 1])

φ3(k) = (·/(g3 ◦ h′) ? [k, k − 1, . . . , 1])

φ4(k) = (·/(g4 ◦ h′) ? [1, 2, . . . , k])

β2(i) = (·/(g3 ◦ h′) ? [k, k − 1, . . . , i+ 1]) g2(h′(i)) (·/(g4 ◦ h′) ? [i+ 1, i+ 2, . . . , k])

φ2(k) = (+/β2 ? [1, 2, . . . , k − 1]) + g2(h′(k))

There are redundant computations in the previous definition. We can opti-
mize the computation of β1 and β2 by pre-computing these redundant values
using a scan operation. Considering left- and right-associative scan operations
(scanl and scanr), we define lists v and w as follows:

[v1, v2, . . . , vk−1] = scanr · /(g3 ◦ h′) ? [k, k − 1, . . . , 2]

[w1, w2, . . . , wk−1] = scanl · /(g4 ◦ h′) ? [2, 3, . . . , k]

That is, vi = ·/(g3 ◦ h′) ? [k, k − 1, . . . , k − i + 1] and wi = ·/(g4 ◦ h′) ? [k −
i + 1, . . . , k − 1, k]. Once we have pre-computed vi and wi, we can define the
following simplified construction:

β1(i) = vi · g1(h′(i)) · wk−i

φ1(k) = g1(h′(k)) + (+/β1 ? [k − 1, k − 2, . . . , 1])

φ3(k) = v1 · (g3 ◦ h′)(1)

φ4(k) = (g4 ◦ h′)(1) · wk−1

β2(i) = vi · g2(h′(i)) · wk−i

φ2(k) = (+/β2 ? [1, 2, . . . , k − 1]) + g2(h′(k))

3.4 Examples

In this section we discuss different functions that we can parallelize automati-
cally. We shall provide examples that we can parallelize using the monoid-based
approach (Catalan Numbers and List Concatenation), and with the semiring-
based approach (Financial Compound Interest, Horner’s Method and Comb Fil-
ters). The actual performance of each of these example is analyzed in Section 4.

Catalan numbers. Catalan numbers form a sequence of positive integers that
appear in the solution of several counting problems in combinatorics, including
some generating functions. Catalan numbers are defined as follows:

Cn =
2(2n− 1)

n+ 1
Cn−1 where C1 = 1

which can be written as f : Z→ Z∗

f(x) :=

{
1 if x = 1
2(2x−1)

x+1 · f(x− 1) otherwise

Similar to the factorial function seen in Section 2, the above function can be
written as a composition of non-recursive functions: Let h : Z → Z be h(x) =

x− 1, g1 : Z→ Z∗ be g1(x) = 2(2x−1)
x+1 and g2 : Z→ Z∗ be g2(x) = 1.

Then, we can define a function f ′i : Z∗ → Z∗, such as

f ′i(s) = g1((h−1)i(1)) · s · g2((h−1)i(1))⇔
f ′i(s) = g1(i+ 1) · s · 1⇔

f ′i(s) =
2(2i+ 1)

i+ 2
· s

since h−1(x) = x+ 1. We can easily calculate that hk(x) = 1 for k = x− 1, since
x+ (0k − 1 + k(−1)) = 0⇔ x− k − 1 = 0.

Therefore, f(x) = (f ′x−1 ◦ f ′x−2 ◦ · · · ◦ f ′2 ◦ f ′1)(1). Since, for every i > 1 ∈ Z,
the composition (f ′i ◦ f ′i−1)(s) can be symbolicaly computed and simplified, i.e.

(f ′i ◦ f ′i−1)(s) =
2(2i+ 1)

i+ 2
· f ′i−1(s)⇔

(f ′i ◦ f ′i−1)(s) =
2(2i+ 1)

i+ 2
·
(

2(2i− 1)

i+ 1
· s
)
⇔

(f ′i ◦ f ′i−1)(s) =

(
2(2i+ 1)

i+ 2
· 2(2i− 1)

i+ 1

)
· s

Function f(x) = (f ′x◦f ′x−1◦· · ·◦f ′1)(1) can be computed in parallel as a reduction.

List Concatenation. Let LZ be the set of lists over the set of integers Z. A
list is an ordered sequence denoted by A = [a1, a2, . . . , an], where the size of
A is #A = n. An empty list is denoted by [] and #[] = 0. Concatenation is an
associative binary-operation over a set of lists. Given two listsA = [a1, a2, . . . , an]
and B = [b1, b2, . . . , bm], the concatenation of the lists A and B is denoted by
A++ B = [a1, . . . , an, b1, . . . , bm]. The identity element regarding concatenation
is the empty list. Thus(LZ,++) is a non-commutative monoid. Let f : Z → LZ
be the following recursive function:

f(x) :=

{
[] if x = 0

[x] ++ f(x− 1) ++ [x] otherwise

Let h : Z→ Z be h(x) = x− 1, g1 : Z→ LZ be g1(x) = [x] and g2 : Z→ LZ
be g2(x) = [x]. Then, we can define a simplified function f ′i : LZ → LZ, such as:

f ′i(s) = g1((h−1)i(0)) ++ s++ g2((h−1)i(0))⇔
f ′i(s) = g1(i) ++ s++ g2(i)⇔
f ′i(s) = [i] ++ s++ [i]

since h−1(x) = x + 1. We have that hk(x) = 0 for k = x, since x + (0k − 0 +
k(−1)) = 0 ⇔ x− k = 0. Therefore, f(x) = (f ′x ◦ f ′x−1 ◦ · · · ◦ f ′2 ◦ f ′1)([]). Since,
for every i > 1 ∈ Z, the composition (f ′i ◦ f ′i−1)(s) can be symbolicaly computed
and simplified, i.e.:

(f ′i ◦ f ′i−1)(s) = [i] ++ f ′i−1(s) ++ [i]⇔
(f ′i ◦ f ′i−1)(s) = [i] ++ ([i− 1] ++ s++ [i− 1]) ++ [i]⇔
(f ′i ◦ f ′i−1)(s) = ([i] ++ [i− 1]) ++ s++ ([i− 1] ++ [i])⇔
(f ′i ◦ f ′i−1)(s) = [i, i− 1] ++ s++ [i− 1, i]

Thus f(x) = (f ′x ◦ f ′x−1 ◦ · · · ◦ f ′1)([]) can be computed in parallel by a reduction.

Financial Compound Interest. We can define financial compound interest with
periodic deposits recursively. Let f : Z→ R be the following recursive function:

f(x) :=

{
y0 if x = 0

(1 + r) · f(x− 1) + yx otherwise

where y0 is the initial deposit, r is the compounded rate, and yx is the deposit
on the x-th period. Let h : Z → Z is h(x) = x − 1, g1 : Z → R is g1(x) = 0,
g3 : Z→ R is g3(x) = (1 + r), g4 : Z→ R is g4(x) = 1, g2 : Z→ R is g2(x) = yx.
From these notions, we define a simplified function f ′i : R→ R as follows:

f ′i(s) = g1((h−1)i(0)) + g3((h−1)i(0))sg4((h−1)i(0)) + g2((h−1)i(0))⇔
f ′i(s) = g1(i) + g3(i)sg4(i) + g2(i)⇔
f ′i(s) = (1 + r)s+ yi ⇔

since h−1(x) = x + 1. We have that hk(x) = 0 for k = x, since x + (0k − 0 +
k(−1)) = 0 ⇔ x − k = 0. Hence, f(x) = (f ′x ◦ f ′x−1 ◦ · · · ◦ f ′2 ◦ f ′1)(y0). Since,
for every i > 1 ∈ Z, the composition (f ′i ◦ f ′i−1)(s) can be symbolicaly computed
and simplified, i.e.:

(f ′i ◦ f ′i−1)(s) = (1 + r)f ′i−1(s) + yi ⇔
(f ′i ◦ f ′i−1)(s) = (1 + r)((1 + r)s+ yi−1) + yi ⇔
(f ′i ◦ f ′i−1)(s) = (1 + r)(1 + r)s+ (1 + r)yi−1 + yi ⇔
(f ′i ◦ f ′i−1)(s) = (1 + r)2s+ [(1 + r)yi−1 + yi]

Thus f(x) = (f ′x ◦ f ′x−1 ◦ · · · ◦ f ′2 ◦ f ′1)(y0) can be computed in parallel.

Horner’s method. Horner’s method is useful to solve polynomials defined recur-
sively. Its implementation can be parallelized as done in the previous example
of financial compound interest. Let ci be the coefficients, for 0 ≤ i ≤ n. Thus a
polynomial of degree n can be evaluated, for a given value of x, by the following
recursive formula, as described by the Horner’s method:

f(n) :=

{
c0 if n = 0

f(n− 1) · x+ cn otherwise

Comb filter in signal processing. Comb filters have several applications in signal
processing [23]. The following equation represents the feedback form used by
comb filters: yt = αyt−T + (1−α)xt, where xt is the input signal at a given time
t and α controls the intensity that the delayed signal is fed back into the output
yt given a delay time T . Let f : Z→ R be the following recursive function:

f(t) :=

{
y0 if t = 0

αf(t− T) + (1− α)xt otherwise

3.5 Implementation

We have used the ideas discussed in this paper to implement a prototype of
our automatic parallelizer that performs source-to-source transformations. This
prototype is written in Python, and it performs symbolic computations using
Python’s sympy package. Symbolic computing allows us to find the inverse of
the hop function and also to infer the depth of the recursive stack (as discussed
in Sections 3.2 and 3.3). Below we show the source-to-source transformation that
we produce for the list concatenation example:

Sequential version:

f :: Integer -> [Integer]

f 0 = []

f n = [n] ++ f(n-1) ++ [n]

Parallel version:

f_g_1 :: Integer -> [Integer]

f_g_1 _HOP_i = [(_HOP_i)]

f_g_2 :: Integer -> [Integer]

f_g_2 _HOP_i = [(_HOP_i)]

f :: Integer -> [Integer]

f n = (parFoldr (++) (map f_g_1 (reverse [1..(n)]))) ++ [] ++

(parFoldr (++) (map f_g_2 [1..(n)]))

In general, for the monoid-based case, we receive inputs in the format below:

f :: Integer -> IMGSET

f e_0 = y_0

f n = g_1(n) * f(n-e_1) * g_2(n)

The prototype’s output consists of three new functions: f g 1, f g 2 and f, which
have the following general format:

f_g_1 :: Integer -> IMGSET

f_g_1 _HOP_i = g_1((_HOP_i*e_1 + e_0))

f_g_2 :: Integer -> IMGSET

f_g_2 _HOP_i = g_2((_HOP_i*e_1 + e_0))

f :: Integer -> IMGSET

f n = (parFoldr (*) (map f_g_1 (reverse [1..((-e_0 + n)/e_1)]))) * y_0 *

(parFoldr (*) (map f_g_2 [1..((-e_0 + n)/e_1)]))

1 2 3 4
#threads

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

sp
e
e
d

u
p Factorial.

f(x) :=

{
1 if x = 1

x · f(x− 1) otherwise

1 2 3 4
#threads

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

sp
e
e
d

u
p Catalan.

f(x) :=

{
1 if x = 1
2(2x−1)

x+1
· f(x− 1) otherwise

1 2 3 4
#threads

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

sp
e
e
d

u
p List concatenation.

f(x) :=

{
[] if x = 0

[x] ++ f(x− 1) ++ [x] otherwise

Fig. 1. Speedup analysis of monoid-based examples.

4 Evaluation

To validate the ideas discussed in this paper, we have implemented our source-
to-source compiler that generates parallel Haskell, using the parallel library pro-
vided by the Strategies package, available in the Glasgow Haskell Compiler
(GHC) [1, 16]. The experiments were performed in four physical cores of an Ivy
Bridge-based Intel processor technology, with 2 GHz of clock and 15 GB of
RAM. In this section, we show results for six benchmarks – three illustrating

1 2 3 4
#threads

1.0

1.5

2.0

2.5
sp

e
e
d

u
p Financial compound interest.

f(x) :=

{
y0 if x = 0

(1 + r) · f(x− 1) + yx otherwise

1 2 3 4
#threads

1.0

1.5

2.0

2.5

sp
e
e
d

u
p Horner’s method.

f(n) :=

{
c0 if n = 0

f(n− 1) · x+ cn otherwise

1 2 3 4
#threads

1.0

1.5

2.0

2.5

sp
e
e
d

u
p Comb filter.

f(t) :=

{
y0 if t = 0

α · f(t− T) + (1− α) · xt otherwise

Fig. 2. Speedup analysis of semiring-based examples.

monoid-based parallelization (factorial, catalan and concatenation), and three
illustrating semiring-based parallelization (compound interest, Horner’s method
and Comb Filter). For the experiments with all six applications we evaluated
the speedup varying the number of threads from 1 to 4, while fixing the input
argument of each function in 50,000. We consider a 95% confidence interval for
a total of five executions.

Monoids. Figure 1 presents the results for the parallelization of recursive func-
tions based on monoids. Vertical bars show confidence interval. For the par-
allelization of the three monoid-based applications we implemented the con-
struction using the list homomorphism presented in Section 3.2. Parallelization
was achieved by means of a right-associative fold operator, which is part of
the Parallel Haskell library. We achieved a maximum speedup of 1.78× in the
implementation of Catalan Numbers.
Semirings. Figure 2 shows the results for the parallelization of recursive func-
tions based on semirings. Our largest speedup was 2.71 in the Horner’s Method
example. For the other two examples, we got more modest speedups. For the
parallelization of the three semiring-based applications we implemented the con-
struction using the list homomorphism discussed in Section 3.3. We have used
the same parallel implementation of the right-associative fold operator which we
applied on the monoid-based examples.
Discussion. We have been able to observe actual speedups on the six examples
that we have played with. These speedups were usually sublinear, e.g., we could
not observe a four-fold speedup in any of the cases. We believe that this sublin-
earity is due to the overhead imposed by the reduction operator required by the
proposed parallel construction. Nevertheless, we would like to emphasize that
all these results have been obtained by means of automatic transformations. In
other words, the use of our techniques does not require any intervention from
the programmer who has implemented the original version of each function that
we parallelize.

5 Related Work

There are several automatic parallelization techniques that, similarly to ours,
seek common patterns in code. Strategies based on matrix-multiplication are a
well-known example. Kogge and Stone [14] have shown how to parallelize a re-
currence equation by rewriting it in a form of matrix multiplication, also called
state-vector update form. An expression e in a loop is a recurring expression if,
and only if, e is computed from some loop-carried value. Sato and Iwasaki [22]
have described a framework based on matrix multiplication for automatically
parallelizing affine loops that consist of reduce or scan operations. They have
also provided algorithms for recognizing the normal form and max-operators
automatically. They have been able to report considerable speedups and high
scalability by applying their framework onto simple benchmarks. Also along this
line, Zou and Rajopadhye [26] have proposed a way to parallelize scan operations
using the matrix multiplication framework with the polyhedral model [2, 3, 24].
They can handle arbitrary nested affine loops; the polyhedron model itself has
already been used to parallelize different types of loops in imperative program-
ming languages [7]. Contrary to our work, these previous approaches search for
a way to deconstruct a loop as multiplication of matrices, we search for a way
to deconstruct a function as a composition of monoid/semiring operations. The
programs that can be parallelized by these two approaches are different.

Fisher and Ghuloum [8] provide a generalized formalization for automatic
parallelization of loops by extracting function composition as the main associa-
tive operator. If a function is closed under composition, its compositions can
be computed efficiently. They describe loops that compute reduction or scan as
the composition of its modeling function. For loops that fit the allowed format,
they can be implemented in a manner that computes the composition of the
modelling function in parallel. Our work improves on theirs, because we extend
their approach to recursive functions. In fact, this is our main contribution: a
general way to extract parallelism buried under the syntax of potentially convo-
luted recursive functions. In addition, we also provide a more general definition
of parallel code by means of algebraic structures such as monoids and semirings.

There exists vast literature about list homomorphisms [5, 13, 20, 15]. List ho-
momorphism is a special class of natural recursive functions on lists, which has
algebraic properties suitable for parallelism. We rely on list homomorphisms to
build efficient parallel computations of recursive functions. However, our ap-
proach does not target exclusively functions that work on lists. As many of our
examples illustrate, we are able to generate parallel code for functions involving
just numbers, or even for more complex data-structures that can be processed
by monoid-based operators.

6 Conclusion

This paper has presented a theoretical approach to parallelize recursive func-
tions. This contribution is important because previous work has reported diffi-
culties to infer parallel behavior out of recursive function. In this case, parallelism
is usually buried under heavy and convoluted syntax. We have delineated two
classes of recursive functions which we can parallelize automatically. These func-
tions have the following property: they can be re-written as the combination of
themselves (through a recursive call) with non-recursive functions by means of
monoid or semiring operators. There are several examples of functions that fit
this framework, including typical functional implementations of algorithms to
compute factorials, sum up elements of lists, concatenate lists, etc.

As future work, we intend to broaden the classes of recursive functions that
our algebraic framework can automatically parallelize. We also intend to perform
optimizations on the parallel code generated by our source-to-source compiler.

References

1. Berthold, J., Marlow, S., Hammond, K., Al Zain, A.: Comparing and optimising
parallel Haskell implementations for multicore machines. In: ADPNA. IEEE (2009)

2. Bondhugula, U., Baskaran, M., Krishnamoorthy, S., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Automatic transformations for communication-minimized par-
allelization and locality optimization in the polyhedral model. In: CC. Springer
(2008)

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI. ACM (2008)

4. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed
refactoring for parallel erlang programs. International Journal of Parallel Program-
ming 42(4) (2013)

5. Cole, M.: Parallel programming with list homomorphisms. Parallel Processing Let-
ters 5(02) (1995)

6. Collins, A., Grewe, D., Grover, V., Lee, S., Susnea, A.: NOVA: A functional lan-
guage for data parallelism. In: ARRAY. ACM (2014)

7. Feautrier, P.: Automatic parallelization in the polytope model. In: The Data Par-
allel Programming Model: Foundations, HPF Realization, and Scientific Applica-
tions. pp. 79–103. Springer (1996)

8. Fisher, A.L., Ghuloum, A.M.: Parallelizing complex scans and reductions. In:
PLDI. ACM (1994)

9. Golan, J.S.: Power Algebras over Semirings: With Applications in Mathematics
and Computer Science. Mathematics and Its Applications 488, Springer, 1 edn.
(1999)

10. Golan, J.S.: Semirings and their Applications. Springer, 1 edn. (1999)
11. Govindarajan, R., Anantpur, J.: Runtime dependence computation and execution

of loops on heterogeneous systems. In: CGO. IEEE/ACM (2013)
12. Hammond, K., Berthold, J., Loogen, R.: Automatic skeletons in template haskell.

Parallel Processing Letters 13(03) (2003)
13. Hu, Z., Iwasaki, H., Takechi, M.: Formal derivation of efficient parallel programs

by construction of list homomorphisms. Trans. Program. Lang. Syst. 19(3) (1997)
14. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general

class of recurrence equations. Trans. Comput. 22(8) (1973)
15. Liu, Y., Hu, Z., Matsuzaki, K.: Towards systematic parallel programming over

mapreduce. In: EuroPar. Lecture Notes in Computer Science, Springer (2011)
16. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.W.: Seq no more:

Better strategies for parallel Haskell. In: Haskell Symposium. ACM Press (2010)
17. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell. In:

ICFP. pp. 65–78. ACM (2009)
18. Misailovic, S., Kim, D., Rinard, M.: Parallelizing sequential programs with statis-

tical accuracy tests. Trans. Embed. Comput. Syst. 12(2) (2013)
19. Morihata, A., Matsuzaki, K.: Automatic parallelization of recursive functions using

quantifier elimination. In: FLOPS. Lecture Notes in Computer Science, Springer
(2010)

20. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inversion
generates divide-and-conquer parallel programs. In: PLDI. ACM (2007)

21. Rotman, J.J.: Advanced Modern Algebra. Prentice Hall, 2 edn. (2003)
22. Sato, S., Iwasaki, H.: Automatic parallelization via matrix multiplication. In: PLDI.

ACM (2011)
23. Schlecht, S.J., Habets, E.A.P.: Connections between parallel and serial combina-

tions of comb filters and feedback delay networks. In: IWAENC (2012)
24. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model

guided loop-nest auto-vectorization. In: PACT. IEEE (2009)
25. Wang, Z., Tournavitis, G., Franke, B., O’Boyle, M.F.P.: Integrating profile-driven

parallelism detection and machine-learning-based mapping. Trans. Archit. Code
Optim. 11(1) (2014)

26. Zou, Y., Rajopadhye, S.: Scan detection and parallelization in “inherently sequen-
tial” nested loop programs. In: CGO. ACM (2012)

