
Automatic Partitioning of Stencil Computations on
Heterogeneous Systems

Alyson D. Pereira∗, Rodrigo C. O. Rocha†, Luiz Ramos§, Márcio Castro∗ and Luı́s F. W. Góes‡
∗ Universidade Federal de Santa Catarina, Email: alyson.pereira@posgrad.ufsc.br, marcio.castro@ufsc.br

‡ Pontifı́cia Universidade Católica de Minas Gerais, Email: lfwgoes@pucminas.br
§ Universidade Estadual de Campinas, Email: luiz.ramos@ic.unicamp.br

† University of Edinburgh, Email: r.rocha@ed.ac.uk

Abstract—The stencil pattern is important in many scien-
tific and engineering domains, spurring great interest from
researchers and industry. In recent years, various optimizations
have been proposed for parallel stencil applications running on
GPUs. However, most of the runtime systems that execute those
applications often fail to fully utilize the parallelism of modern
heterogeneous systems. In this paper, we propose a mechanism
based on machine learning that automatically partitions stencil
computations across CPU and GPU. We implemented it into the
PSkel framework and found that the mechanism can boost the
performance of stencil applications on average by 17.9x compared
to their sequential CPU-only counterparts, by 1.34x compared to
a GPU-only version, and by 1.48x compared to a parallel CPU-
only version.

Keywords—Stencil, Work Partitioning, Decision Tree Learning

I. INTRODUCTION

In recent years, Graphics Processing Units (GPUs) have
been used in conjunction with general-purpose CPUs to en-
able High Performance Computing (HPC) with high energy
efficiency. While modern CPUs use large caches and pro-
vide multiple out-of-order cores with branch prediction and
speculation, GPUs are much richer in floating-point units and
provide large amounts of simple processing cores.

Despite being commonly found in the same hardware plat-
form or even on the same chip, CPUs and GPUs typically
have different application programming interfaces. In fact,
widespread programming approaches for GPUs provide very
low-level programming abstractions. Furthermore, most of
them require knowledge and careful use of the GPU memory
model to maximize parallelism. Thus, programming parallel
applications for CPU-GPU heterogeneous platforms can be
challenging, tedious, and error-prone, even for experienced
programmers [1].

A common approach to address such complexity is the
use of algorithmic skeletons. Parallel skeletons model and
abstract common parallel programming patterns (computation
and coordination phases), thereby enabling the programmer
to focus on algorithm design, rather than on runtime system
details. Among existing parallel skeletons, the stencil pattern
is critical in many scientific computing domains, including
computational fluid dynamics and image processing [2].

In addition to reducing programming complexity in modern
parallel architectures, it is critical to maximize their process-

ing efficiency. However, most existing runtime systems for
CPU-GPU platforms may not exploit the platform’s potential.
Specifically, they lack work partitioning mechanisms to split
the computation of a parallel application across CPUs and
GPUs, thereby improving the overall processing utilization.
Based on those observations, previous research proposed
frameworks with runtime systems that enable automatic work
partitioning via static and/or dynamic strategies [3]–[5]. How-
ever, they commonly overlook specific application aspects that
could help improving their partition optimization strategies.

In this paper, we propose and evaluate an automatic work
partitioning mechanism, based on machine learning tech-
niques, for heterogeneous systems. We implement our mech-
anism in the PSkel framework for stencil computations [6],
which provides a single high-level programming abstraction
across CPU and GPU. We evaluate the performance of the
proposed work partitioning mechanism using three stencil
applications. For those applications, our proposed mechanism
has an average performance improvement of 17.9x compared
to their sequential versions, and improves the average per-
formance by 1.34x and 1.48x compared to their GPU-only
and CPU-only parallel versions, respectively. In summary, our
main contributions are as follows: (1) we propose an automatic
work-partitioning mechanism, based on machine-learning, for
iterative stencil applications, capable of predicting the best
partitioning based on profiling information; (2) we show that
the optimal partitioning scheme of a given application is
hardware dependent and our mechanism is portable across
systems; (3) we extend the PSkel framework with the proposed
mechanism; and (4) we evaluate the mechanism and compare
it against other approaches.

The remainder of this paper is organized as follows. Section
II provides background on the stencil pattern and discusses
related work. Section III describes the automatic work parti-
tioning mechanism. Finally, Sections IV through VI present
our evaluation method, results, and conclusions.

II. BACKGROUND AND RELATED WORK

In this section, we provide background on the stencil parallel
pattern and discuss past efforts in work partitioning for CPU-
GPU systems.

A. The Stencil Pattern

The stencil pattern operates on n-dimensional data struc-
tures, using an input data value and its neighbors to compute
the corresponding output data element [7]. Specifically, a
sliding window (also called mask) scans the entire set of input
data and produces output data using a stencil function. The
mask size corresponds to a specific number of neighbors of
each element of the input data. The stencil function performs
computations using the mask and the neighbors of each
element of the input data to produce a corresponding element
in the output data. The stencil application repeats that process
on every element of the input data.

Tiling is a common technique used to process large amounts
of data on limited hardware resources. Tiling techniques for
iterative stencil computations have been vastly studied in
the past and remains relevant even in modern CPU and
GPU architectures, where memory can be scarce in light of
applications with large data sizes [2], [8]–[10]. In addition, in
those systems, the memory bandwidth may be a bottleneck,
especially given the data transfer overheads that tiling imposes.
Overall, existing CPU and GPU approaches typically entail
transforming iteration loops (time dimension) and stencil loops
(space dimensions), provided that the stencil data is enabled;
i.e., available at the memory level at which the processing
elements can apply the loop transformations [11]. In CPUs,
that level is typically the CPU cache, whereas in GPUs, the
level is either the shared or the global memory of the device.

To illustrate and detail how tiling can be applied to stencil
computations, we use a formal definition. Let A be a 2D
data matrix, with dimensions dim(A) = (w, h), where w
and h are, respectively, its width and height. Using tiles of
dimensions (w′, h′) yields d w

w′ ed h
h′ e possible tiles of A. Let

Ai,j be one such tile, where 0 ≤ i < d w
w′ e and 0 ≤ j < d h

h′ e
Ai,j has offset (iw′, jh′) relative to the top left corner of A,
and dim(Ai,j) = (min{w′, w − iw′},min{h′, h− jh′}). The
offset is an indexing displacement required for accessing the
elements of the tile.

Applying a stencil on A, entails computing an element-wise
neighborhood function (mask) containing the displacement of
each neighbor of a given central element. Due to neighbor de-
pendence, computing the stencil function along the boundary
of a tile requires obtaining values from adjacent tiles. Let r
be the range of the neighborhood mask, i.e., r is the most
distant displacement required for the neighborhood defined by
the mask. The area of range r comprising the neighborhood
is often denominated halo region. If the stencil function is
applied iteratively on A, for t iterations, the neighborhood
dependence among tiles limits the number of iterations that
can be consecutively computed without a proper memory
synchronization in the computing device.

To enable performing t′ ∈ [1, t] consecutive iterations
for each tile Ai,j , a tile must be enlarged to include a
number of adjacent halo regions, collectively called a ghost
zone. The number of adjacent halo regions that compose
the ghost zone is proportional to t′. The overlap across

neighboring tiles allows the GPU to generate its halo regions
locally for a number of consecutive iterations proportional
to the size of the ghost zone. In particular, the enlarged
Ai,j tile transferred to the GPU global memory has enlarged
dimensions dim∗(Ai,j) = (max{min{w′ + 2rt′, w − iw′ +
rt′}, 1},max{min{h′+2rt′, h−jh′+rt′}, 1}) and has offsets
(max{iw′ − rt′, 0},max{jh′ − rt′, 0}), relative to A.

Because of neighborhood dependencies in stencil compu-
tations, each iteration on an enlarged tile adds noise to the
ghost zone from the border towards the center of the tile.
After t′ consecutive iterations, only the logical tile region holds
correct and non-overlapping values. The larger the value of
t′, the more redundant computations are required to correctly
compute the logical tile region. Thus, sizing the ghost zones
poses a trade-off between the cost of redundant computations
and the reduction in communication when processing iterative
stencil computations on GPUs. Despite the potential benefit
of this trapezoidal tiling technique, an improper selection
of the ghost zone size may negatively impact the overall
performance [8], [10].

In this work, to enable the work-partitioning of iterative
stencil computations between CPU and GPU, we adapt the
trapezoidal tiling technique available in PSkel [10] to generate
two enlarged data tiles, one for the GPU and other for the CPU.
The size of each tile is transparently calculated according to
the work distribution between CPU and GPU.

B. Previous Efforts on Automatic Work Partitioning on CPU-
GPU Systems

Several researchers have studied work partitioning mecha-
nisms for modern multi-GPU and CPU-GPU systems seek-
ing better utilization of processing elements and applica-
tion response times. For example, the compiler and runtime
framework proposed by Ravi et al. maps annotated reduction
patterns to CPU-GPU systems and dynamically assigns chunks
of computation across devices [5]. However, the performance
of the applications relies on a good selection of the chunk
sizes, and, unlike our work, they do not take any application
runtime characteristics into account for work distribution.

Grewe and O’Boyle [3] adopt a ML-based compiler model
that performs static partitioning of data-parallel tasks based on
program code and runtime features. Unlike in our approach,
their work uses SVM, and does not focus on any parallel
pattern. Instead, they use OpenCL code to generate a single
kernel for multiple devices. Moreover, they extract the machine
learning features from a compiler analysis of the program
source code. While their approach is a good option to charac-
terize an application and avoid online profiling, the obtained
features can change since the compiler may perform code
optimizations after the extraction of features, for example by
the OpenCL JIT compiler, and it is also not possible to obtain
features that describes the runtime behavior of the application.

Ganapathi et al. [12] prune the search space using statistical
machine learning to boost the prediction accuracy of optimiza-
tions parameters for multicore stencil codes focusing on per-
formance and energy efficiency. With a similar goal, Luo et al.

Input Instances Profiling

Execution

profiling features

Work Partition Size

Execution Phase

[input, mask, computation, number of iterations, work partition size]

optimal partitioning

Learning
Process Predictor

Training Phase
Profiling

New Instance

Fig. 1: Overview of the proposed approach.

[13] prune the optimization space by feature similarity, which
their system obtains from its self-learning optimal solution-
space database. However, their approach requires a domain-
specific language and, as the work by Ganapathi, does not
consider work partitioning across CPU and GPU.

Shen et al. [14] focus on imbalanced applications by
finding the best match between a qualitative model of the
application and the hardware capabilities of the execution
environment. In a follow-up work focused on multi-kernel
applications, the authors exploit inter-kernel parallelism and
select a partitioning strategy based on the execution flow of
the application [15]. To eliminate the need for a training phase,
Kim et al. [4] assume homogeneous device performance in
multi-GPU systems and partition work homogeneously across
devices.

Luk et al. [16] perform curve-fitting to map the partitioned
computations to processing elements based on an analytical
model that take into account the application, problem size, and
platform configurations. The approach uses dynamic compila-
tion to adapt to runtime changes. Lee et al. [17] propose a
greedy algorithm to partition work across multiple processing
elements of varying computational power. Their algorithm
uses a top-down induction tree where a node represents a
distribution of work across devices and taking an edge entails
estimating response time based on the data transfer cost and
performance variation in the work execution times.

III. AUTOMATIC WORK PARTITIONING MECHANISM

Our solution relies on the ML-based framework proposed
in [18], which is comprised of an offline training phase and an
online execution phase. Figure 1 depicts the framework used
in our approach. The offline phase entails: (1) producing a
training set composed of input instances (i.e., features and an
outcome variable), generated by a synthetic stencil benchmark;
(2) selecting a set of performance-impacting features of the
stencil computations; (3) creating a predictor based on the
selected features to infer the best work partition size for a
given scenario; (4) evaluating the predictor’s accuracy; and
(5) adjusting the prediction model. The online phase entails:
(1) online profiling of the target application on the target
execution environment; (2) applying the prediction model to
select the best partition size of data and computation; and (3)
performing work assignment to the processing units using a
work partitioning mechanism.

TABLE I: Input parameters and their values used in the
synthetic application to generate the training set.

Input parameter Value

Input sizes 1282, 2562, 5122,10242, 20482, 40962, 81922

Mask sizes 4, 9, 12, 24, 25, and 49
Number of iterations 10, 20, 30, 40, 50 and 60
Arithmetic operation Addition, multiplication or both

A. Training Set and Profiling Features

To create a training set for our predictive model, we adopt
a synthetic stencil benchmark capable of exercising different
characteristics of stencil applications, as described in Table I.
In particular, we execute and profile the benchmark on the
target execution environment using multiple combinations of
input parameters and work partition sizes (e.g., assign 40%
work to the GPU and 60% to the CPU).

We instrument the synthetic benchmark using the PAPI
library [19]. PAPI provides an interface for accessing hardware
performance counters available on modern microprocessors,
with a neglible overhead on performance. These counters exist
as a small set of registers that count events, i.e., occurrences
of specific signals related to the processor’s function. From
these counters it is possible to define metrics that corresponds
to the behavior of the application on the underlying hardware,
e.g., cache-miss ratio.

Each combination of input parameters compose an input
instance. For each instance, we capture all possible profiling
features available on CPU and GPU (only for a single iteration
of the input instance) and we also track the work-partitioning
scheme that results in the best execution time. These profiling
features compose the features of the input instances and the
best work-partitioning is its outcome variable. This enables
our approach to be applied to any CPU-GPU platform config-
uration.

We obtained a total of 18 features for the CPU, including:
cache miss ratio on all cache levels; TLB misses; floating-
point, branch, load, and store instructions; total instructions
per cycle; and resource stalls per cycle. For the GPU we
obtained a total of 104 features, including: cache hit ratio on
all cache levels, data read, and write throughput; data read,
and write transactions; floating-point and integer instructions;
stalls; utilization of the load/store, arithmetic logic, control
flow and memory GPU units; and the efficiency of the stream
multiprocessors, floating-point units, branches, global memory
load and stores.

B. Decision Tree Learning

Using the training set of the previous step, we create a
predictor capable of inferring work partition sizes for new
unobserved instances. Our predictor expresses partition sizes
as a percentage of the work assigned to the GPU, which is our
outcome variable. Since optimal work partition sizes typically
translate to optimal application performance in each scenario,
we aim for a highly-accurate predictor.

TABLE II: Profiling features with highest impact on perfor-
mance.

Source Acronym Description

CPU
CPU L3 TCM Ratio of the number of L3 cache misses to the number

of L3 cache accesses

CPU L2 DCM Ratio of the number of L2 data cache misses to the
number of L2 data cache accesses

GPU
GPU L1 TCH Hit rate in L1 cache for global loads

CPU L2 TCH Hit rate at L2 cache for all read requests from L1 cache

Application ITERATIONS Total number of stencil iterations

To build our predictor, we adopt a decision tree learning
algorithm, namely the Classification and Regression Tree
(CART) algorithm [20]. CART outputs a decision tree based
on a learning sample, composed of a set of historical data
with pre-assigned classes for all observations. In CART, a
decision tree node represents a binary (yes/no) question that
splits the learning sample into smaller subparts. In particular,
the algorithm searches all possible variables and values for
the best split, i.e., the question that splits the data into two
parts with maximum homogeneity. This process is successively
repeated for the data fragments resulting from each step to
produce a classification tree.

To create our predictor, we initially generate a decision
tree using all the profiling features obtained. The generated
decision tree will contain just a subset of features that are
capable to define the best work-partitioning. However, it is
possible to obtain a better accurate decision tree by swapping
some of the features from the previous decision tree and
perform a cross-validation test. We empirically optimize the
prediction model to obtain the profiling features that most
impact on performance. Table II summarizes the details of
the selected features. The resulting predictor can infer a work
partition size based on the profiling information of a new
unobserved instance.

C. Work Partitioning Mechanism

For the online execution phase, we leverage the work
partitioning and tiling mechanisms available in PSkel frame-
work [6], [10]. Its runtime system is able to automatically
partition the input data into two tiles for the CPU and GPU de-
vice, according to a user-specified argument designating what
percentage of the input data should be assigned to the GPU.
The tiling mechanism replicates the borders around the parti-
tion point in the input data so that each processing unit works
on its private copy of the borders. That redundant computation
eliminates the need for memory data-transfer, synchronization,
and book-keeping for border exchange between processing
units across different iterations of the application [10].

In order to obtain the features needed for the decision tree
classifier, when a new iterative stencil application is executed,
the framework profiles its execution during the first stencil
iteration, simultaneously on both CPU and GPU devices. Then,
based on the rules of the decision tree, the framework predicts
the work-partitioning that should be applied to the execution
of the remaining iterations of the application. During the

100%

ITERATIONS < 35

85%

GPU_L2_TCH < 34.27

75%

100%

CPU_L2_DCM < 21.39

65%

GPU_L1_TCH < 94.86

0%

70%

GPU_L1_TCH < 94.92

60%

GPU_L2_TCH < 85.19

0%

0%

GPU_L1_TCH < 93.16GPU_L1_TCH < 94.1

CPU_L3_TCM < 89.32

yes no

Fig. 2: Decision tree generated by RPART.

simultaneous execution, the framework dedicates one CPU
core to manage the GPU execution, while the remaining CPU
cores perform the stencil computation on separate data tiles.

IV. EXPERIMENTAL SETUP

In this section, we describe our evaluation method. We
carried out our experiments on a NUMA machine with two
six-core Intel Xeon E-5645 processor with 32GB of RAM and
a NVIDIA Quadro 2000 GPU. To build the applications, we
used NVIDIA CUDA version 8.0 and GCC version 4.9.2.

Since our work partitioning approach adopts supervised
learning, it requires input instances. To avoid exhaustive
search, we aim at covering a significant space of the stencil
spectrum by using a set of synthetic benchmarks to generate
a training set. We then use that training set to build a
decision tree for the predictive model of our automatic work
partitioning approach.

We pragmatically selected a wide range of settings for the
synthetic benchmarks, aiming to cover the main features of
the stencil spectrum. In particular, we varied the input size, the
mask size, the number of iterations, and the types of arithmetic
operations performed on the stencil mask. Moreover, we vary
the GPU work-partitioning size for each of the previous
combinations in order to obtain its best work-partitioning
scheme. We choose a total of 20 partitioning schemes, ranging
from 0% to 100%, in multiples of 5%. It may be possible that
a partition between these ranges has the best execution time,
thus our best work-partitioning is an approximation.

Table I describes the values we considered for each feature.
From these combinations, we profile a total of 162 synthetic
applications in order to obtain the profiling features needed
for our predictive model, since we only need to capture the
behavior of the stencil applications during its first iteration.
Then, we execute the remaining combinations with the se-
lected work-partitioning schemes in order to obtain the best
execution time for each of them. In total, we obtain 972 input
instances to the decision tree predictor.

To generate the decision tree we used RPART1, an open-
source implementation of the CART algorithm. RPART specif-
ically generates a decision tree given a training set with
a group of features and a particular class for each input

1https://cran.r-project.org/package=rpart

TABLE III: Profiling features of the stencil applications.

App
Profiling Features (%)

CPU L3 TCM CPU L2 DCM GPU L1 TCH GPU L2 TCH

Cloudsim 98.61 44.75 50.88 66.32
FAST 4.85 10.82 91.03 89.83
GoL 98.52 6.01 94.5 75.92

instance. Figure 2 shows the generated decision tree using
the synthetic applications as input instances. Questions on
the split nodes represent the profiling features we previous
identified as the features with highest impact on performance.
Leaf nodes indicates the amount of work-partitioning that must
be assigned to GPU. Table II gives a description of each of
feature.

To predict the best partitioning for a new unobserved stencil
application, we profile the first stencil iteration of the applica-
tion. Based on the value of each profiling feature, the decision
tree algorithm outputs the best partitioning for the remaining
iterations. We evaluated the generalization capability of the
decision tree using a 2-fold cross-validation method with
stratified sampling. In stratified sampling, each sample set has
the same proportion of classes as the whole training set. For
each fold, we have two sets s1 and s2. For the first fold we
train on s1 and test on s2, followed by training on s2 and
testing on s1 for the second fold. According to this method,
our ML-based approach is 85% accurate when used to infer
the best work partition size for unobserved instances.

To evaluate our proposed work partitioning mechanism, we
considered three 2D stencil applications: CloudSim, which
simulates cloud dynamics based on a cellular automaton [21];
Game of Life (GoL), which is a stencil implementation of
the cellular automaton Conway’s “Game of Life” [22]; FAST,
which implements corner detection in images [23].

Table III shows the profiling feature values obtained of each
one of the stencil applications when running with input sizes of
81922. All applications present different feature values, which
makes hard to predict the best work partition size for each
case. It is important to mention that these feature values change
considerably with different input sizes.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of our work parti-
tioning mechanism using the three applications discussed in
Section IV. In particular, we fully utilize the available GPU
memory and execute the applications iteratively with 81922

input matrices and we vary the number of iterations from 10
to 60 in multiples of 10.

We evaluate each application using different partitioning
approaches, namely: automatic work partitioning (AWP); a
sequential baseline version running on a single CPU core
(Sequential); an OpenMP parallel version running on the CPU
(CPU-only); a CUDA version running on the GPU (GPU-
only); a naive partitioning strategy based on the ratio of the
computing time of first stencil iteration on CPU and GPU, also
considering the memory transfers to the GPU and the number
of stencil iterations (Naive); and an oracle. The oracle always
selects the work partition that provides the best execution time

S
pe

ed
up

 o
ve

r
S

eq
ue

nt
ia

l

Number of iterations

(a) Cloudsim

CPU-only GPU-only Naive AWP

(b) Game of Life (c) FAST

0

 5

10

 1
5

 2
0

 2
5

 10 20 30 40 50 60

0

 5

 1
0

 1

5

20

 2
5

 3

0

35

10 20 30 40 50 60 10 20 30 40 50 60

0

 5

 1
0

15

Oracle

Fig. 3: Speedup over the sequential execution.

for each application and configuration. To provide a common
basis for performance comparison, we compute the speedup of
all variants relative to Sequential. Figure 3 shows the speedup
of the stencil applications. The speedup takes into account the
time spent by the GPU memory transfers. However, for the
partitioned executions, those memory transfers are overlapped
with computations on the CPU.

Figure 3a shows the results for CloudSim. Since the appli-
cation is rich in floating-point operations, it tends to perform
better on the GPU, where floating-point units are much more
abundant than in the CPU. On average, GPU-only boosts the
performance of CloudSim by 17.6x compared to Sequential,
leaving little room for improvement towards the oracle’s
performance. The Naive partitioning picks a work-partitioning
of 60%, however, while this partitioning schemes improves
the performance over a CPU-only execution it degrades the
performance in relation to a GPU-only execution. The AWP
method predicts a GPU work partition of 75% and achieves
a speedup of 18.53x on average for executions with multiple
iterations (at least 94% of the oracle’s performance, which
has a optimal work-partitioning of 85%). In those cases, AWP
improves the average performance of CloudSim by 3x and by
5% compared to CPU-only and GPU-only, respectively.

Figure 3b presents the speedup of GoL. The application
features conditional branches that may reduce the potential
performance gains on the GPU due to divergence [24]. In fact,
CPU-only holds an 11% speedup over GPU-only and a 29.4x
speedup compared to Sequential. With AWP, GoL performs up
to 23% better than on GPU-only, achieving a overall speedup
of 31.5x compared to Sequential, matching the oracle partition
of 65%. The Naive partitioning also benefits GoL, performing
at 98% of the oracle average performance.

Finally, Figure 3c presents the performance for FAST.
Unlike Cloudsim, FAST is rich in control flow instructions.
The resulting execution is imbalanced, and therefore less
suitable for GPUs. In fact, the imbalanced execution can
benefit significantly from the high-accuracy branch prediction
in the CPU. For that reason, FAST performs 86% better on
CPU-only than on GPU-only. The Naive partitioning picks a
GPU work-partitioning of 75%, which performs less than a
CPU-only execution except for a 60 iterations scenario where
it slightly improves the performance by 4%. AWP predicts a

9.0

Work Partitioning

S
pe

ed
up

0% 5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%
10

0%
Naiv

e
AW

P

Ora
cle

0

5

 1

0

 1
5

 2

0

18.7
17.9

14.5

13.4
12.9

13.5
14.2

14.714.514.614.614.614.5

13.112.9
12.5

11.8
11.010.9

10.5
10.29.9

12.1

Fig. 4: Average speedup over all applications.

CPU-only execution for all iterations, corresponding to 91%
of the oracle performance, which has 65% for GPU work-
partitioning.

From the results above we conclude that harnessing the pro-
cessing power of both CPU and GPU can significantly improve
the performance of stencil applications. Figure 4 shows the
average speedup (geometric mean) for all applications when
selecting a fixed GPU work partition (from 0% to 100%),
using the Naive and AWP approaches and the best partitioning
(oracle) for each application. The oracle can improve the
average performance of the applications by 18.7x compared
to Sequential, by 1.39x (maximum of 3.35x) compared to
GPU-only, and by 1.54x (maximum of 3.27x) compared to
CPU-only. Our predictive model (AWP) outperforms any fixed
work-partitioning and even the Naive approach for partition
selection, and attain 96% of the oracle’s performance on
average. This represents an average performance improvement
of 17.9x over Sequential, 1.48x over CPU-only (maximum of
3.09x), and 1.34x over GPU-only (maximum of 3.35x).

VI. CONCLUSION

In this work, we presented an automatic work-partitioning
approach for stencil applications. We implemented it into the
PSkel stencil framework, which provides a high-level program-
ming interface for executing stencil computations on hetero-
geneous systems. We showed that a high-level programming
interface integrated with an automatic work-partitioning mech-
anism can exploit the high performance offered by heteroge-
neous systems, while improving their ease of programming.
Our results showed that the ML-based strategy improves the
performance of parallel stencil applications on heterogeneous
systems by up to 32x over the single-core implementation and
by up to 3.35x compared to a GPU-only version, reaching
more than 77% of the oracle’s performance.

Future work includes the development of work-partitioning
mechanism for more stencil applications and platforms; the
improvement of the predictive model for imbalanced stencils;
and the study of other automatic optimizations and adaptive
optimization algorithms.

REFERENCES

[1] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An
implicitly parallel programming model for stencil computations on large-
scale GPU-accelerated supercomputers,” in Proc. of 2011 Int. Conf. for
High Performance Computing, Networking, Storage and Analysis, 2011.

[2] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” in Proc.
26th ACM Int. Conf. on Supercomputing, 2012, pp. 311–320.

[3] D. Grewe and M. F. P. O’Boyle, “A static task partitioning approach
for heterogeneous systems using OpenCL,” in Proc. 20th Int. Conf. on
Compiler Construction, 2011, pp. 286–305.

[4] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute
device image in OpenCL for multiple GPUs,” in Proc. 16th ACM Symp.
on Principles and Practice of Parallel Programming, 2011, pp. 277–288.

[5] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal, “Compiler and runtime
support for enabling generalized reduction computations on hetero-
geneous parallel configurations,” in Proc. 24th ACM Int. Conf. on
Supercomputing, 2010, pp. 137–146.

[6] A. D. Pereira, L. Ramos, and L. F. W. Góes, “PSkel: A stencil
programming framework for CPU-GPU systems,” Concurrency and
Computat. Pract. and Exper., vol. 27, no. 17, pp. 4938–4953, 2015.

[7] M. D. McCool, “Structured parallel programming with deterministic
patterns,” in Proc. 2nd USENIX Conf. on Hot Topics in Parallelism,
2010, pp. 5–5.

[8] J. Meng and K. Skadron, “A Performance Study for Iterative Stencil
Loops on GPUs with Ghost Zone Optimizations,” Int. Journal of Parallel
Programming, vol. 39, no. 1, pp. 115–142, 2011.

[9] T. Lutz, C. Fensch, and M. Cole, “PARTANS: An Autotuning Frame-
work for Stencil Computation on multi-GPU Systems,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 59:1–59:24, Jan. 2013.

[10] R. C. O. Rocha, A. D. Pereira, L. Ramos, and L. F. W. Góes,
“TOAST: Automatic tiling for iterative stencil computations on GPUs,”
Concurrency and Comput. Pract. and Exper., p. e4053, 2017.

[11] D. Orozco, E. Garcia, and G. Gao, “Locality optimization of stencil
applications using data dependency graphs,” in Proc. 23rd Int. Conf. on
Languages and Compilers for Parallel Computing, 2011, pp. 77–91.

[12] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A case for machine
learning to optimize multicore performance,” in Proc. 1st USENIX Conf.
on Hot Topics in Parallelism, 2009, pp. 1–1.

[13] Y. Luo, G. Tan, Z. Mo, and N. Sun, “FAST: A Fast Stencil Autotuning
Framework Based On An Optimal-solution Space Model,” in Proc. 29th
ACM Int. Conf. on Supercomputing, 2015, pp. 187–196.

[14] J. Shen, A. L. Varbanescu, P. Zou, Y. Lu, and H. Sips, “Improving
performance by matching imbalanced workloads with heterogeneous
platforms,” in Proc. 28th ACM Int. Conf. on Supercomputing, 2014,
pp. 241–250.

[15] J. Shen, A. L. Varbanescu, X. Martorell, and H. J. Sips, “Matchmaking
Applications and Partitioning Strategies for Efficient Execution on
Heterogeneous Platforms,” in 44th Int. Conf. on Parallel Processing,
2015, pp. 560–569.

[16] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive Mapping,” in Proc. 42nd
IEEE/ACM Int. Symp. on Microarchitecture, 2009, pp. 45–55.

[17] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Transparent CPU-GPU
collaboration for data-parallel kernels on heterogeneous systems,” in
Proc. 22nd Int. Conf. on Parallel Archit. and Compilation Techniques,
2013, pp. 245–256.

[18] M. Castro, L. F. W. Góes, C. P. Ribeiro, M. Cole, M. Cintra, and J.-
F. Méhaut, “A machine learning-based approach for thread mapping on
transactional memory applications,” in Proc. 18th Int. Conf. on High
Performance Computing, 2011, pp. 1–10.

[19] A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb, “Parallel performance
measurement of heterogeneous parallel systems with GPUs,” in Proc.
2011 Int. Conf. on Parallel Processing, 2011, pp. 176–185.

[20] L. Breiman, F. J. H., O. R. A., and S. C. J., Classification and Regression
Tress, 1984.

[21] A. R. da Silva and M. M. Gouvêa, Jr., “Cloud dynamics simulation with
cellular automata,” in Proc. Summer Computer Simulation Conf., 2010,
pp. 278–283.

[22] M. Gardner, “Mathematical Games - The Fantastic Combinations of
John Conway’s New Solitaire Game ’Life’,” Scientific American, vol.
223, no. 3, pp. 120–123, 1970.

[23] E. Rosten and T. Drummond, “Fusing Points and Lines for High
Performance Tracking,” in Proc. 10th IEEE Int. Conf. on Computer
Vision, 2005, pp. 1508–1515.

[24] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in GPU
programs,” in Proc. 4th Workshop on General Purpose Processing on
Graphics Processing Units, 2011, pp. 3:1–3:8.

