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Abstract—Most high-performance data processing (aka big-
data) systems allow users to express their computation using
abstractions (like map-reduce) that simplify the extraction
of parallelism from applications. Most frameworks, however,
do not allow users to specify how communication must take
place: that element is deeply embedded into the run-time
system (RTS), making changes hard to implement. In this
work we describe our reengineering of the Watershed sys-
tem, a framework based on the filter-stream paradigm and
focused on continuous stream processing. Like other big-data
environments, watershed provided object-oriented abstractions
to express computation (filters), but the implementation of
streams was an RTS element. By isolating stream function-
ality into appropriate classes, combination of communication
patterns and reuse of common message handling functions
(like compression and blocking) become possible. The new
architecture even allow the design of new communication
patterns, for example, allowing users to choose MPI, TCP or
shared memory implementations of communication channels
as their problem demand. Applications designed for the new
interface showed reductions in code size on the order of 50%
and above in some cases, with no significant performance
penalty.
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I. INTRODUCTION

The explosion of data available to researchers today has

led to the growth of the area of high-performance data

processing (a.k.a. big-data). To make the task of developing

applications that can explore the parallelism intrinsic to

the data in a way accessible to experts in the domain of

the data, but perhaps not in parallel programming, multiple

frameworks have been proposed, with MapReduce (and its

open-source implementation, Hadoop) being the most well

known. Most frameworks, however, do not allow users to

specify how communication between computer nodes must

take place: that element is deeply embedded into the run-

time system (RTS), making changes hard to implement.

Watershed [1] is a distributed stream processing system

for massive data streams, inspired in the data-flow model.

Stream processing systems comprise a collection of modules

that compute in parallel, and that communicate via data
streams [2], i.e., filters obtain data from channels, transform

them and send them to output channels. In its original form,

Watershed also presented streams as black-boxes, elements

that cannot be altered by the user. Not only that, but its

orientation towards continuous stream processing made it

hard to use when developing more traditional, batch/file-

oriented applications.

To change that, we performed the re-engineering of the

Watershed framework, to make the stream abstraction exten-

sible by the programmer. By isolating stream functionality

into appropriate classes, combination of communication

patterns and reuse of common message handling functions

(like compression and blocking) became possible. Our goal

is that, with this redesign, users can extend the framework

with other communication elements, better fitted to their

algorithms.

For example, users should be able to add transformations

to a data stream in an elegant fashion, without requiring

new processing filters to be written, nor changes to their

application code. One common case is that of message

aggregation: in many applications, to reduce overhead due

to the transmission of many small messages, it is often

good for performance to block a large number of data items

into a single message to be sent over the network. In the

original version of Watershed, each developer had to add

that blocking code (and its unblocking counterpart) to their

application code. In the re-engineered version, it should be

possible for programmers to reuse a common block/unblock

element that would be added directly to the stream, not to

the application code.

The new framework architecture should also allow the

design of new communication patterns, for example, allow-

ing users to choose MPI, TCP or shared memory imple-

mentations of communication channels as their problems

demand. That would help also in making Watershed simpler

to use in the development of batch/file-oriented applications,

as streams could be extended to better serve that form of

processing.

The remainder of this work describes our design decisions

during this re-engineering process, and some preliminary

results. Those results show that applications designed using

the new API showed reductions in code size on the order

of 50% and above in some cases, with no significant

performance penalty.
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II. RELATED WORK

Stream processing is an area that has received some

attention lately, with a few different solutions proposed, like

SPC, S4, Millwheel and others. The emphasis on making

the communication element (streams) more flexible can be

related to the Coflow abstraction. Those are discussed next.

SPC (Stream Processing Core)[3] is a distributed stream

processing middleware designed to support stream-mining

applications that extract information from a large number

of digital data streams. SPC offers high-level user requests

for information, which are translated into one or more

processing flow graphs. Similarly to the Watershed program-

ming abstraction, a processing element receives data from a

collection of streams through input ports, process and writes

resulting data to output ports, thus creating new streams.

S4 (Simple Scalable Streaming System)[4] is a distributed

stream processing engine inspired by the MapReduce model.

The S4 design shares many attributes with SPC. Both

systems are designed for big data and are capable of mining

information from continuous data streams using user defined

operators. The main differences are in the architectural

design. While the SPC design is derived from a subscription

model, the S4 design is derived from a combination of

MapReduce and the Actors model.

Spark Streaming is a stream processing framework based

on the programming model called discretized streams (D-

Streams), that offers a high-level functional programming

API, strong consistency, and efficient fault recovery [5].

Spark Streaming is implemented as an extension to the

Spark [6] cluster computing framework, which lets users

seamlessly intermix streaming, batch and interactive queries.

D-Streams treats a streaming computation as a series of

deterministic batch computations on small time intervals.

The discretized stream concept differs from the Watershed

model, where we have the notion of a continuous stream

of data computation, opposed to this notion of a series of

deterministic batch computations.

MillWheel [7] is a programming model, tailored specifi-

cally to streaming, low-latency systems. Users write applica-

tion logic as individual nodes in a directed compute graph,

for which they can define an arbitrary, dynamic topology.

Collectively, a pipeline of user computations will form a

data-flow graph, where records are delivered continuously

along edges in the graph. Users can add and remove com-

putations from the topology dynamically, without needing

to restart the entire system. That concept is very similar to

the working principle in Watershed, in which the filters are

the computation nodes.

The stream processing systems just mentioned, how-

ever, treat streams — their communication primitives —

as black boxes, embedded into their run-time systems. In

that aspect, this re-engineering of Watershed tries to turn

streams into a first order abstraction. In that sense, it can

be related to Coflow[8], a networking abstraction to express

the communication requirements of prevalent data parallel

programming paradigms. Coflow makes it easier for the

applications to convey their communication semantics to

the network, which in turn enables the network to better

optimize common communication patterns. Similarly to the

concept of communication pattern offered by Coflow, in the

Watershed model the users are able to specify which will

be the communication pattern, but they are also allowed to

develop their own communication channels.

III. MODULE ABSTRACTION

In Watershed, a processing module comprises a filter, a

set of input ports and a set of output ports, as illustrated

in Figure 1. We can attach a stream channel to each input

port and attach one or more stream channels to each output

port. When a module consumes the data produced by another

module, a stream channel dynamically binds them via their

input and output ports, respectively.

Filter

Input port 1
Input port 2

Input port N
...

Output port 1
Output port 2

Output port M
...

Figure 1. Abstraction of a processing module.

Filters receive data from input ports in an event-based

fashion. After a filter has processed the data, it may send

the transformed data through its output ports, triggering new

delivery events at the next filters connected to that specific

stream.

A filter can be said to be the producer for another filter

when the former produces an output stream of data that is an

input stream of the latter. Similarly, a filter can be said to be

the consumer from another filter when the former consumes

an input stream of data that is produced as an output by the

latter.

IV. STREAM ABSTRACTION

The processing filters are connected via data stream chan-

nels. A stream is basically described by a sender, a deliverer,

a stack of encoders and a stack of decoders, as depicted in

Figure 2. Encoders and decoders can be used as pairwise

data transformers during the data transmission through a

stream, e.g., for cryptography, data compression, data ag-

gregation and disaggregation, etc. We can also use either an

encoder or a decoder as a single, one-way transformation,

e.g., to encode data stream records as JSON strings, or to

change a temperature stream from Fahrenheit to Celsius.

The sender is responsible for sending the data through a

specific transmission medium, e.g. sending the data through

a network communication or through a distributed file sys-

tem. The deliverer is responsible for obtaining data from the

specific transmission medium and for delivering that data to

a particular processing filter.
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Encoder ...

... Filter

Encoder Sender

Deliver Decoder Decoder

Figure 2. The decomposition of a single stream connected to a filter.

Except for the one-way transformers, the stack of en-

coders and the stack of decoders must agree in the sequence

of execution, in such a way that the decoder of the last

encoder will be the first to be executed, and vice-versa. The

sender and the deliverer must also agree in the transmission

medium and the communication protocol.

From the class diagram of the module components, Fig-

ure 3, we can see that the data stream is basically composed

by a chain of senders and a chain of deliverers, or receivers.

Sender

+ send(Data)

Encoder

+ sender

Filter

+ sender

Receiver

+ receive(Data)

Deliver

+ deliver(Data)

+ receiver

Decoder

Figure 3. Simplified class diagram of the module components.

The Watershed default library of streams contains some

basic implementations that are common in most of the

data processing applications [8], such as: broadcast over the

network; round-robin over the network; over the network

labeled stream; file line reader; file line writer. The library

also contains some encoders and decoders, such as data

compressor, data decompressor, itemizers, and a regular

expression-based filter.

V. TERMINATION MECHANISM

In its original design, Watershed considered all streams

as continuous and had no explicit termination semantics. In

the process of re-engineering it, we developed a termination

mechanism based on Pregel’s halting mechanism [9]. The

termination of a module is based on every module instance

voting to halt. A filter has an event called onInputEnd which

is triggered when an input stream ends, and another event

called onAllInputsEnded which is automatically triggered

when all the input streams terminate. Both filters and stream

deliverers have a function called halt. When the stream

deliverer calls the halt function, it triggers the onInputEnd
event of the filter. When the filter calls the halt function,

it sends a signal to the Watershed master specifying that

that particular instance of the module has voted to halt. By

the time all instances of a given module have halted, the

Watershed master removes the module from the execution

environment.

The mechanism for propagating the termination signal

of a filter through a stream channel is the responsibility

of the communication protocol used to implement that

particular stream, where the deliverer associated with it must

trigger the onInputEnd event. Consumers can then decide

to halt when all of its data producers finish, based on the

propagation of the end-of-stream signal.

Based on the halting mechanism, we can define stream

channels as either finite or continuous. Finite streams, have

well defined and predetermined duration, such as a stream

that reads data from a file. Continuous streams have unde-

termined duration, depending on an outside actor to finish

its execution, such as a stream that reads data from a web

feed, a stream that writes data into a file, or a stream that

reads data from the network.

With this halting mechanism, it becomes simpler to imple-

ment batch applications on top of Watershed, as illustrated

in Section VII. In a sense, the implementation of a Wa-

tershed batch application becomes equivalent to an Anthill

application [10], which was one of our original goals for

this work.

VI. LOADING A MODULE

When the user wants to load a new module, M1, he sends

the module descriptor to the Watershed master. The master

schedules the slave nodes that will execute each instance

of the module. Afterwards, the master properly sends the

instance descriptors to the scheduled slave nodes. Finally,

it verifies the bindings among the modules. The consumer

is the one responsible for describing the stream channel

components it needs, as represented by Figure 2, that will

create the binding with the producer. Therefore, different

consumers are able to use different stream policies to read

from a same output.

For each filter M0 that is a producer for M1, the Wa-

tershed master sends a stack of encoders and a sender for

each instance of M0, which will be properly attached to the

output port, as specified by M1. In the same fashion, for

each filter M2 that is a consumer of a data stream produced

by M1, the master provides a stack of encoders and a sender

for each instance of M1, which will be properly attached to

its output port, as specified by the input stream of M2.

VII. EXPERIMENTAL EVALUATION

In order to validate our redesign and the performance

of the re-engineered system, we have implemented two

Watershed batch applications composed by two filters. We

compared their performance with other available implemen-

tations of the same algorithms, and compared the code

developed in each case based on lines of code (LOC) to have

a notion of code complexity in each case. The experiments
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have been conducted in a cluster containing five computer

nodes, where one of them has performed the role of master

and the remaining four behave as slave nodes. Each node

runs on an Intel processor R© with 4 CPU cores, a clock of

2.5GHz, and 8GB of RAM. We performed a total of five

executions for each experiment.

A. Word Frequency

The word frequency is a batch processing application

for massive datasets that is very suitable for the MapRe-

duce abstraction [11]. Figure 4 presents an implementa-

tion in Watershed for the word frequency application that

is conceptually equivalent to the MapReduce abstraction.

The application consists of two filters: the WordCounter,

which is equivalent to a Mapper, and the Adder, which is

equivalent to a Reducer. The communication between the

WordCounter and the Adder filters uses the shuffle pattern

of communication [8], which delivers key-value pairs based

on the result of a mapping function (usually hash) to the

key. In Wathershed, that pattern is also known as a labeled

stream.

Input

Dataset

Output

Dataset

Network

LineReader WordCounter Combiner KeyValueSender

KeyValueDeliverAdderLineWriter

Figure 4. Word Frequency filter-stream application design.

The LineReader input stream reads the dataset line by

line, with the dataset evenly distributed in the computer

cluster. The Combiner is the implementation of an encoder

in the stream abstraction and its implementation resembles

the concept of Combiners in Hadoop MapReduce [12], in the

sense that it works as a local reducer. The KeyValueSender

and the KeyValueDeliverer belong to the default library of

network streams and together they implement the labeled

stream communication pattern.

For an input dataset of 1.1GB of English books crawled

from Project Gutenberg [13], adding up to a total of about

22.5 million lines of text, the experimental results of execu-

tion time are shown in Figure 5. The dataset was partitioned

into smaller data blocks of 32MB, which were distributed in

the nodes of the computer cluster. For each execution, the

number of instances of the WordCounter filter was the same

as the number of computer nodes used in each experiment,

and only one instance of the Adder filter.

Relative to the execution with only one node, by in-

creasing the number of computer nodes, the word frequency

application presents a nearly linear speedup with an average

efficiency of 94.2%, as illustrated in Figure 6. On the other

hand, the MapReduce implementation shows a speedup that

is close to a logarithmic growth.

Figure 5. Word Frequency experimental analysis of execution time.

Figure 6. Word Frequency experimental speedup.

Figure 7 shows the experimental scalability of the word

frequency application in respect of the size of the input

data. For small input data, the latency overhead added by

the Watershed framework can be much smaller than the

overhead added by the Hadoop MapReduce framework,

since it is heavily dependent on the file system.

The source code for the word frequency application de-

signed for the re-engineeered Watershed interface has a total

of 72 lines of code, with the advantage that the LineReader

stream is a reusable component implemented by the default

library of streams. However, for the previous version where

the stream channels were embedded in the RTS and the

user had the need to develop a filter to act as the dataset

reader, the source code for the word frequency application

had a total of 127 lines of code (43% LOC reduction for

the re-engineered version). Just as a reference, an equivalent

implementation in Hadoop MapReduce has 64 lines of code,

where the same code for the Reducer can be used as the

Combiner.
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Figure 7. Word Frequency experimental scalability.

B. k-Nearest Neighbors Classifier

As a second experimental batch application, we have im-

plemented a common data mining classification algorithm,

the k-nearest neighbors (kNN) classifier. The kNN classifier

predicts the class of a given input as the majority class

among its k nearest neighbors computed from the training

dataset [14]. The experiments were performed for a value of

k equal to 50, a total of 5000 testing samples, and different

quantities of training samples.

Figure 8 illustrates the Watershed implementation for the

k-nearest neighbors algorithm. We use the same LineReader

stream channel developed previously as the input stream.

The input stream passes through an itemizer, which is

implemented by a decoder, in order that each input data

is forwarded as a key-value pair, with the input data as the

value and an incremental identifier as the key. The identifier

is important for the merge phase, that is when the partial

results of the top k nearest neighbors are combined for each

key composing the classification based on the final k-nearest

neighbors.

For each instance of the Compare filter, the full testing

dataset is read and only a portion of the training dataset.

Afterwards, each instance produces a top k nearest neighbors

relative to its portion of the training dataset.

In the Compare-Merge communication, the same imple-

mentation for the labeled stream has been used.

Testing

Dataset

Output

Dataset

Network

LineReader

Compare

Itemizer

KeyValueSender

KeyValueDeliverMergeLineWriter

partition:false

Training

Dataset

LineReader Itemizer

Figure 8. k-Nearest Neighbors filter-stream application design.

Figure 9 explicits an analysis of the execution time for the

kNN, varying the number of computer nodes in the cluster.

It follows a pattern similar to the word frequency execution

time, as seen in Figure 5.

Figure 9. k-Nearest Neighbors classifier experimental analysis of execution
time.

The kNN application presents a nearly linear speedup with

an average efficiency of 103%, as detailed by Figure 10. The

super-linear behavior is due to the increase in reduction of

the partition fed to each node, as fewer items have to be

read and may be all kept in memory by each node.

Figure 10. k-Nearest Neighbors classifier experimental speedup.

Figure 11 depicts the experimental scalability of the kNN

application, based on the variation in the size of the training

dataset, in the scale of thousands of samples.

The source code for the kNN application, due to the

reusability of components offered by the default library in

Watershed, has a total of 141 lines of code. The code size

for the new interface is only 25% of the 563 lines of code of

the same kNN application as implemented for the previous

version of the Watershed framework.
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Figure 11. k-Nearest Neighbors classifier experimental scalability.

VIII. CONCLUSION

Multiple frameworks have been proposed to ease the

task of programming big-data applications. Most of them,

however, allow developers to express only their processing

needs — communication is left as a black box inside the

framework, to which programmers have no access. In this

work we have described the process of re-engineering Wa-

tershed, our stream processing system, to make streams first-

class objects in the framework. By doing that, programmers

can now implement communication channels that better fit

their needs, as well as to reuse code to add functionalities to

an existing communication channel. Our first results show a

significant reduction in code complexity, based on lines of

code, while maintaining good performance, comparable or

superior to the previous version.

As future work we intend to continue the development of

new streams, including an HDFS stream to allow Watershed

to read and write directly to the Hadoop File System. That

will make data partitioning simpler for file-based applica-

tions.
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